Презентация_сем4 (1076843)
Текст из файла
ОТНОШЕНИЯ И СООТВЕТСТВИЯСпециальные свойствабинарных отношений• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е.
idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е.
idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е. ρ−1 = ρ .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е. ρ−1 = ρ .4) антисимметричным, если(∀x∀y)(((x, y) ∈ ρ ∧ (y, x) ∈ ρ) ⇒ (x = y))• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е.
idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е. ρ−1 = ρ .4) антисимметричным, если(∀x∀y)(((x, y) ∈ ρ ∧ (y, x) ∈ ρ) ⇒ (x = y))т.е. ρ ∩ ρ−1 ⊆ idA• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е.
idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е. ρ−1 = ρ .4) антисимметричным, если(∀x∀y)(((x, y) ∈ ρ ∧ (y, x) ∈ ρ) ⇒ (x = y))т.е. ρ ∩ ρ−1 ⊆ idA (в частности, м. б., что ρ ∩ ρ−1 = ∅ !).• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е.
ρ−1 = ρ .4) антисимметричным, если(∀x∀y)(((x, y) ∈ ρ ∧ (y, x) ∈ ρ) ⇒ (x = y))т.е. ρ ∩ ρ−1 ⊆ idA (в частности, м. б., что ρ ∩ ρ−1 = ∅ !).Эквивалентное определение:(∀x∀y)(((x, y) ∈ ρ ∧ x 6= y) ⇒ ((y, x)) ∈/ ρ).• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение ρ ⊆ A2 называется:1) рефлексивным, если (∀x ∈ A)((x, x) ∈ ρ) ,т.е. idA ⊆ ρ .2) иррефлексивным, если (∀x ∈ A)((x, x) ∈/ ρ) ,т.е. idA ∩ρ = ∅ .3) симметричным, если (∀x∀y)((x, y) ∈ ρ ⇒ (y, x) ∈ ρ) ,т.е. ρ−1 = ρ .4) антисимметричным, если(∀x∀y)(((x, y) ∈ ρ ∧ (y, x) ∈ ρ) ⇒ (x = y))т.е.
ρ ∩ ρ−1 ⊆ idA (в частности, м. б., что ρ ∩ ρ−1 = ∅ !).Эквивалентное определение:(∀x∀y)(((x, y) ∈ ρ ∧ x 6= y) ⇒ ((y, x)) ∈/ ρ).• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit5) транзитивным, если(∀x∀y∀z)(((x, y) ∈ ρ ∧ (y, z) ∈ ρ) ⇒ ((x, z) ∈ ρ)),• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit5) транзитивным, если(∀x∀y∀z)(((x, y) ∈ ρ ∧ (y, z) ∈ ρ) ⇒ ((x, z) ∈ ρ)),т.е. ρ ◦ ρ ⊆ ρ .• First • Prev • Next • Last • Go Back • Full Screen • Close • Quit5) транзитивным, если(∀x∀y∀z)(((x, y) ∈ ρ ∧ (y, z) ∈ ρ) ⇒ ((x, z) ∈ ρ)),т.е. ρ ◦ ρ ⊆ ρ .6) плотным, если(∀x∀y)(((x, y) ∈ ρ ⇒ (∃z)((z 6= x) ∧ (z 6= y) ∧ ((x, z) ∈ ρ) ∧ ((z, y) ∈ ρ)).• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;3) порядком (или частичным порядком), если оно рефлексивно,антисимметрично и транзитивно;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;3) порядком (или частичным порядком), если оно рефлексивно,антисимметрично и транзитивно;4) предпорядком (или квазипорядком), если оно рефлексивно итранзитивно;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;3) порядком (или частичным порядком), если оно рефлексивно,антисимметрично и транзитивно;4) предпорядком (или квазипорядком), если оно рефлексивно итранзитивно;5) строгим порядком, если оно иррефлексивно, антисимметрично итранзитивно;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;3) порядком (или частичным порядком), если оно рефлексивно,антисимметрично и транзитивно;4) предпорядком (или квазипорядком), если оно рефлексивно итранзитивно;5) строгим порядком, если оно иррефлексивно, антисимметрично итранзитивно;6) строгим предпорядком, если оно иррефлексивно и транзитивно;• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitБинарное отношение называется:1) эквивалентностью, если оно рефлексивно, симметрично итранзитивно;2) толерантностью, если оно рефлексивно и симметрично;3) порядком (или частичным порядком), если оно рефлексивно,антисимметрично и транзитивно;4) предпорядком (или квазипорядком), если оно рефлексивно итранзитивно;5) строгим порядком, если оно иррефлексивно, антисимметрично итранзитивно;6) строгим предпорядком, если оно иррефлексивно и транзитивно;Говорят: отношение эквивалентности, толерантности, порядка, предпорядка .
.”. “ и т.п.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е. рефлексивно исимметрично.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е.
рефлексивно исимметрично.Поскольку для любого множества A ∈ U, A 6= ∅, A ∩ A = A 6= ∅ и∅ ρ ∅, отношение ρ является рефлексивным.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е.
рефлексивно исимметрично.Поскольку для любого множества A ∈ U, A 6= ∅, A ∩ A = A 6= ∅ и∅ ρ ∅, отношение ρ является рефлексивным.Поскольку из A ∩ B 6= ∅ следует, что B ∩ A 6= ∅, отношение ρявляется симметричным.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е. рефлексивно исимметрично.Поскольку для любого множества A ∈ U, A 6= ∅, A ∩ A = A 6= ∅ и∅ ρ ∅, отношение ρ является рефлексивным.Поскольку из A ∩ B 6= ∅ следует, что B ∩ A 6= ∅, отношение ρявляется симметричным.Вывод: это отношение толерантности.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е.
рефлексивно исимметрично.Поскольку для любого множества A ∈ U, A 6= ∅, A ∩ A = A 6= ∅ и∅ ρ ∅, отношение ρ является рефлексивным.Поскольку из A ∩ B 6= ∅ следует, что B ∩ A 6= ∅, отношение ρявляется симметричным.Вывод: это отношение толерантности.Покажем, что ρ — не эквивалентность.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 1.Рассмотрим отношение ρ на множестве всех подмножеств некоторогомножества U : A ρ B ⇔ A ∩ B 6= ∅ и ∅ ρ ∅.Покажем, что это отношение толерантности, т.е. рефлексивно исимметрично.Поскольку для любого множества A ∈ U, A 6= ∅, A ∩ A = A 6= ∅ и∅ ρ ∅, отношение ρ является рефлексивным.Поскольку из A ∩ B 6= ∅ следует, что B ∩ A 6= ∅, отношение ρявляется симметричным.Вывод: это отношение толерантности.Покажем, что ρ — не эквивалентность.Поскольку из A ∩ B 6= ∅ и B ∩ C 6= ∅ в общем случае не следует, чтоA ∩ C 6= ∅, что легко видеть что, отношение ρ не транзитивно.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .Отсюда b = bt2t1 , что на множественатуральных чисел возможно только при t1 = t2 = 1 .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .Отсюда b = bt2t1 , что на множественатуральных чисел возможно только при t1 = t2 = 1 .Следовательно,a = b.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .Отсюда b = bt2t1 , что на множественатуральных чисел возможно только при t1 = t2 = 1 .Следовательно,a = b.Покажем транзитивность.• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .Отсюда b = bt2t1 , что на множественатуральных чисел возможно только при t1 = t2 = 1 .Следовательно,a = b.Покажем транзитивность.Если a делит b , а b делит c , то найдутсятакие натуральные числа t1 , t2 , такие, что b = at1 и c = bt2 .• First • Prev • Next • Last • Go Back • Full Screen • Close • QuitПример 2.Зададим на множестве натуральных чисел N следующее отношение:a | b в том и только том случае, когда a является делителем b “.”Это отношение рефлексивно, поскольку любое число является делителемсамого себя.Покажем антисимметричнсть.Пусть a делит b и, с другой стороны, bделит a .Тогда найдется натуральное число t1 , такое, что b = at1 ,инайдется t2 , такое, что a = bt2 .Отсюда b = bt2t1 , что на множественатуральных чисел возможно только при t1 = t2 = 1 .Следовательно,a = b.Покажем транзитивность.Если a делит b , а b делит c , то найдутсятакие натуральные числа t1 , t2 , такие, что b = at1 и c = bt2 .
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.