Главная » Просмотр файлов » Галкин С.В. Математический анализ. Метод. указания по материалам лекций для подготовки к экзамену в первом семестре.стр.1-63. 2004г

Галкин С.В. Математический анализ. Метод. указания по материалам лекций для подготовки к экзамену в первом семестре.стр.1-63. 2004г (973096)

Файл №973096 Галкин С.В. Математический анализ. Метод. указания по материалам лекций для подготовки к экзамену в первом семестре.стр.1-63. 2004г (Методичка с лекциями (Галкин С.В.))Галкин С.В. Математический анализ. Метод. указания по материалам лекций для подготовки к экзамену в первом семестре.стр.1-63. 2004г (973096)2014-02-23СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

осковский государственный технический университет имени Н,Э, Баумана /= Л/ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ии. Н.Э. БАУМАНА СВ. Галкин МАТЕМАТИЧЕСКИЙ АНАЛИЗ Москва Г6489М Галкин С.В. ~ Математический анализ ' 2004 20-92 ВОЗВРАТИТЕ КНИГУ НЕ ПОЗЖЕ обозначенного здесь срока ИИИМ аи аааааа:р ипаи*.:-..: аааюаюю О ~ж-: и' оаааааао о Методические указания по материалам лекций для подготовки к экзамену в первом семестре УДК 517 ББК 22.161 Г!6 Рецензенты: Ю. Ф. Палое Галкин С.В. Г!6 Математический анализ: Методические указания по материалам лекций для подготовки к экзамену в первом семестре.

— Мх Издательство МГТУ им. Н.Э, Баумана, 2004. — 116 сг ил. 18В)«1 5-703 8-2406-0 Кратко раскрыты, пояснены и доказаны основные теоретические положения, излагаемые и лекциях по разделам математического аиампа а первом семестре: зяемонты логики, тооРни множеств, теория предааоа, дифференциальное исчнсяеннс и теория экстремума. Изложение материааа завершается выводом формул скоРости и ускорения материапьиоя точки при плоском крипопинояном движении, Это позвоняьт ососновать формулы, прнводнмыо в курос теоротическоя механики первого семестра.

Дяя студентов первого курса всех специаяьностея. УДК 517 ББК 22.161 кхин «-тозя-2поь-ц М М1 "ГУ нль Н.Э. Бауь«яна,звоа ВВЕДЕНИЕ, ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ И ТЕОРИИ МНОЖЕСТВ (лекции 1, 2) Введение Числа. Еще в школе мы изучаем числа, Натуральные числа 1класс, или мнсокество натуральных чисел обозначается 1«1) могут быть представлены в виде суммы конечного числа единиц, например: 4 = 1 + 1 + 1 + 1. Если взять все натуральные числа, нуль и все натуральные числа со знаком минус, получится класс, или множество целых чисел, обозначаемое Е.

Рациональные числа (класс, или множество рациональных чисел обозначается 11) можно представить в видо отношения (лат. гайо — отношение) двух целых чисел: а ц=-, если Ьм О, Рациональные числа можно представить ко- Ь печной нли бесконечной периодической десятичной дробью, например: 1/4 = 0,25; 4/3 =1,(З); 17/45 = 0,3(7). Числа, представляемые бесконечной непериодической дробью, называются иррациональными числами. Опи известны давно, некоторые из них имеют фундаментальное значение, и их обозначают специальными буквами« /2 = 14142..., /3 = 1732..., — = т = 1618„., за= 31415, «/5+ 1 е = 2 718...), Рациональньш и иррациональные числа образуют класс, или множество действительных чисел, обозначаемое Е, Метод математической индукции известен очень давно, но и сейчас довольно часто используется при докпзательстветеорем.

Он основан на принципе математической индукции: Утеероюдение г/(ф заеисли/ее оггз натуралыюго параметра и, перно дпл любого налгурального л, если: — доказано А(1/ «или А/7«/, /, Но — натуральное числа); — предполагается справедливость А(п) — индуктивное пред»алоэ>гение; на основе первых двух пунктов можно доказать справедливость А!и+1), Примеры: 1. Докажем формулу для суммы нечетных чисел; 1 + 3+ 5+ „, + + Он> — !) и>.

Прн п 1 утверждение спрвведлнво. Пусть опо справедливо для некоторого натурального л: 1+ 3+ 5+ ... 2» — 1 я>, Довел>ем утверждение для л+ 1: 1+ 3+ 5+... (2» - 1) + (2л+ 1) = л + 2»+ 1 = (п+ 1) . 2. Докежеь> н«рея«хс>яео Бернулли(1+ х)" <1» >ж (х г -!). Прн л = 1 неравенство выполнено. Прсдположнм, что оно выполнено прн некотором натурвяьном л. Доны«ем, что оно выполнено прн л + 1; (1+х)ы'- (1+х)(!+х) В(1«лх)(1+х) = ! +х+ »хе лх'В В 1+ х+ >ж 1+ (л+1) х, Следовательно, неравенство выполнено для л>обого натурального и.

Элементы математической логики В математической логике имеют дело с вь>слазь>ваниями Прас>псе высказывание- это некоторос утверждение, которое либо истинно, либо лспкно. Например, высказывание «2 — четное числ» истинно, а «3 — четное число» ложно, Истинность или ложность таких высказываний не меняетсл — это логические константы (обозначение: И вЂ” всегда истинное и Л вЂ” всегда ложное высказывание). Есть высказывания, истинность или ложность которых зависит от некоторых условий, например зш х» О, Оно истинно, если 2пк <х < < (2п+ 1)к, и = О, +1, й2, ..., и ложна при других значениях х. Над высказываниями можно выполнять логические операциь Истинность результата логической операции устанавливают по таблице истинности, которая задаст истинность или ложность резудьтата в зависимости от истинности или ложности высказываний-операндов, Рассмотрим оснавныс логические операции; отрицание, коньюллцто (логнческое умна>кение), дизьюннцто (логическое сложение), мыпликацию (следование) и эквиваленцию.

Отр>!наине: А, А, «не А». Высказывание -А истинно тогда н только тогда, когда высказывание А ложно. Например, высказываппо А состоит в там, что х = О, тогда «не А» — в том, что х ы О. Запишем эно символически: А: х= О, тогда А:х~ О. Конъюнкция (логическое умножение): Ад В, «А и 3». Высказывание А л В истинно тогда н только тогда« когда А истинно и 3 истинно. Если А или В ложно, то А л В ложно. Пусть, например, А: х+у=1,3: х — у=О(х,у-действительныечисла).ТогдаАлВ: х =у = 112. Пара (х,у) является решением системы уравнений, если опа являетсл решением и первого, и второго уравнения, Дизъюикцня (лагическое сложение), А >В, «А илн В», Высказывание А ч В истинно, если А истинно или В истинно. Например, если А: х — 1=0, В: х — 2=0 (х — действитель>юе числа), та АмВ.

(х — 1)(х — 2) = О. Импликац ил (следованне); А ~ 3, «еслн А, то В», «для 3 даста- точна А», «для А необходимо В», Высказывание А =э В ложно тогда и только тогда, когда А истинно, а В ложно (из истины не может следовать ложь). Эквиваленция (эквивалентность): А«о В «А эквивалентна В», Высказывание А е» В истинно тогда и только тогда, когда значения А и В совпадают, т. е. А н 3 ложны или А и В истинны, Запишем таблицу истшп>ости для логических операций: Примеры: 1, Доке>«ел> спрвведлнвость способа докезятельстм теорем «от протнвлогок (л => В) ее (-б => ->!).

Длл этого составим твблнлу нстннностн: 2. Докажем закон трлнзитияности для деяствитсльнмх чисел, т. е, высклзыаание К: (А => В) л (В => С) => (А => С)- всегда истинно. Составим тлбллну истинности: В самом деле, высказывание К истинно лрн всех знеченняк А, В, С, Приведем основные свойс>ива логических операций; 1) -( А) =А — двойное отрицание; 2) А л (В л С) = (А гл В) >л С, А ч (В ч С) = (А ч В) ч С вЂ” ассоциативность; З)Ач1Вг,С)м(АчВ)л(АчС), Ал(ВчС)=(А>чВ)ч(АлС) — дистрибутивность; 4) (АдВ)=~ Ач В), (лАчВ)=( Агл В)-законыдеМоргана Справедливость свойств доказывается с помощью таблиц истинности, упрлжнсннс.

Проверьте снрласдлиаость некоторых снаястн. Часто в >яатематических записях используют квантор всеобщности 'Ф (означает: «любой, произвольный») и квалтор существования 3 (означает: «существует»). Напри>лер, запись чх е Х будет ь Заметим, что законы ессоцнятианостн для умножения чисел А(ВС) = (АВ)С и сложения чисел (А+ В)+С = А+(В+С) аналогичны логическнль Законы листрнбутиености для чисел несколько иаыс. Для чисел А(В+С) =АВ+АС (соясем кяк а логике), но А + (ВС) н (А + В)(А + С). Из этого следует, что законы арифметики, по которым до снк пор строят компьютеры, отличаются от законов логики, оо которым мыслит человек. По>тол>у для того, чтобы сконсгруиронать интеллектулльного робота, подобного чслоаску, л|ало улслнчить намять и скорость лылолпения оосрллнв.

Недо изменить арно«ни конструирования и составлять интсллсктулчьныс лрогрлмм>л нл языке логики, а нс нл языке лрифметнки. прочитана так: любой элемент х из мно>кестваХ, а запись»х: р или >Ух (р означает: любой элемент х, для которого выполнено свойствор. Записи Зх е Хи Лх; р (Зх /р) будут прочитаны соответственно: существует элемент х из множества Х и существует элемент х, для которого выполнено свойство р. Символы математической логики позволяют записывать математические определения и теоремы кратко, просто и содержательно.

Запишем, например, определение предела функции г"(х) при Х вЂ” > + со~ (ппл,„у'(х) = Ь с=>'з>е» О ЛМ(е) > О;(х > М) =а|,((х)- Ь! <е. Здесь Ы(е) предполагается действительным числом, Запишем еще определение предела последовательности действительных чисел (х„), (и = 1, 2, 3 „.). |пи „„х„= Ь с=»уе > О Л Ф(е) > О;(л > дг) =ж |х„- Ь! < е. Здесь Ф(е) предполагается натуралы>ым числом, Понятие предела мы обсудим подробно далее, но постарайтесь осмыслить (или запомнить) его уже сейчас. Если это удалось, постарайтесь записать определения предела функции при х -> —, х -> хо, где хб — конечное число.

Элементы теории множеств Множество — это совокупность элементов. Запись х и А означает, что элемент х принадле>кит множеству А, а х Ф А означает, что х не является элементом множества А. Два множестваА и В называ>отея равными (А = В), если оии состоят из одних и тех >ке элементов, Множество считается заданным, если его элементы заданы нли указан алгоритм их отыскания.

Мноясество ма>кот быть задано следующими способами: — перечислением элементов, если число элементов конечно; — указанием характеристического свойства мномсества я(х), которому удовлетворяют все его элементы и только опи, например: М: (х: я(х)) или М: (х/В(х)); — выделением части из целого, например: множество четных чисел, делящихся на 6; — объединением частей в целое, например: множество целыхчиссл определяется как совокупность множества натуральных чисел, нуля и множества натуральных чисел, умноженных на (-1).

Характеристики

Тип файла
PDF-файл
Размер
12,25 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее