7 ¦СTо¦ВтАв¦- (930141)
Текст из файла
Билет 7
1Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.Будем обозначать случайные величины заглавными буквами латинского алфавита (Х, Y,Z,…), а их возможные значения – соответствующими малыми буквами (xi, yi,…). Примеры: число очков, выпавших при броске игральной кости; число появлений герба при 10 бросках монеты; число выстрелов до первого попадания в цель; расстояние от центра мишени до пробоины при попадании. Можно заметить, что множество возможных значений для перечисленных случайных величин имеет разный вид: для первых двух величин оно конечно ( соответственно 6 и 11 значений), для третьей величины множество значений бесконечно и представляет собой множество натуральных чисел, а для четвертой – все точки отрезка, длина которого равна радиусу мишени. Таким образом, для первых трех величин множество значений из отдельных (дискретных), изолированных друг от друга значений, а для четвертой оно представляет собой непрерывную область. По этому показателю случайные величины подразделяются на две группы: дискретные и непрерывные. Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями. Случайная величина называется непрерывной, если множество ее возможных значений целиком заполняет некоторый конечный или бесконечный промежуток. Дискретные случайные величины. Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика. Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:
xi | x1 | x2 | … | xn | … |
pi | p1 | p2 | … | pn | … |
Заметим, что событие, заключающееся в том, что случайная величина примет одно из своих возможных значений, является достоверным, поэтому
Пример. . Два стрелка делают по одному выстрелу по мишени. Вероятности их попадания при одном выстреле равны соответственно 0,6 и 0,7. Составить ряд распределения случайной величины Х – числа попаданий после двух выстрелов.
Решение. Очевидно, что Х может принимать три значения: 0, 1 и 2. Их вероятности найдены в примере, рассмотренном в лекции 3. Следовательно, ряд распределения имеет вид:
хi | 0 | 1 | 2 |
pi | 0,12 | 0,46 | 0,42 |
Графически закон распределения дискретной случайной величины можно представить в виде многоугольника распределения – ломаной, соединяющей точки плоскости с координатами (xi, pi).
x1 x2 x3 x4 x5
При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. Поэтому в таком случае лучше пользоваться интервальными оценками, то есть указывать интервал, в который с заданной вероятностью попадает истинное значение оцениваемого параметра. Разумеется, чем меньше длина этого интервала, тем точнее оценка параметра. Поэтому, если для оценки Θ* некоторого параметра Θ справедливо неравенство | Θ* - Θ | < δ, число δ > 0 характеризует точность оценки ( чем меньше δ, тем точнее оценка). Но статистические методы позволяют говорить только о том, что это неравенство выполняется с некоторой вероятностью. Надежностью (доверительной вероятностью) оценки Θ* параметра Θ называется вероятность γ того, что выполняется неравенство | Θ* - Θ | < δ. Если заменить это неравенство двойным неравенством – δ < Θ* - Θ < δ, то получим: p ( Θ* - δ < Θ < Θ* + δ ) = γ. Таким образом, γ есть вероятность того, что Θ попадает в интервал ( Θ* - δ, Θ* + δ). Доверительным называется интервал, в который попадает неизвестный параметр с заданной надежностью γ.
Построение доверительных интервалов. 1. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии. Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего оценить ее математическое ожидание а. Будем рассматривать выборочное среднее
как случайную величину
а значения вариант выборки х1, х2,…, хп как одинаково распределенные независимые случайные величины Х1, Х2,…, Хп, каждая из которых имеет математическое ожидание а и среднее квадратическое отклонение σ. При этом М(
) = а,
(используем свойства математического ожидания и дисперсии суммы независимых случайных величин). Оценим вероятность выполнения неравенства
. Применим формулу для вероятности попадания нормально распределенной случайной величины в заданный интервал:
р ( ) = 2Ф
. Тогда , с учетом того, что
, р (
) = 2Ф
=2Ф( t ), где
. Отсюда
, и предыдущее равенство можно переписать так:
. (18.1) Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал
, где значение t определяется из таблиц для функции Лапласа так, чтобы выполнялось равенство 2Ф(t) = γ. Пример. Найдем доверительный интервал для математического ожидания нормально распреде-ленной случайной величины, если объем выборки п = 49,
σ = 1,4, а доверительная вероятность γ = 0,9. Определим t, при котором Ф(t) = 0,9:2 = 0,45: t = 1,645. Тогда
, или 2,471 < a < 3,129. Найден доверительный интервал, в который попадает а с надежностью 0,9. 2. Доверительный интервал для оценки математического ожидания нормального распределения при неизвестной дисперсии. Если известно, что исследуемая случайная величина Х распределена по нормальному закону с неизвестным средним квадратическим отклонением, то для поиска доверительного интервала для ее математического ожидания построим новую случайную величину
, (18.2) где
- выборочное среднее, s – исправленная дисперсия, п – объем выборки. Эта случайная величина, возможные значения которой будем обозначать t, имеет распределение Стьюдента (см. лекцию 12) с k = n – 1 степенями свободы. Поскольку плотность распределения Стьюдента
, где
, явным образом не зависит от а и σ, можно задать вероятность ее попадания в некоторый интервал (- tγ , tγ ), учитывая четность плотности распределения, следующим образом:
. Отсюда получаем:
(18.3) Таким образом, получен доверительный интервал для а, где tγ можно найти по соответствую-щей таблице при заданных п и γ. Пример. Пусть объем выборки п = 25,
= 3, s = 1,5. Найдем доверительный интервал для а при γ = 0,99. Из таблицы находим, что tγ (п = 25, γ = 0,99) = 2,797. Тогда
, или 2,161< a < 3,839 – доверительный интервал, в который попадает а с вероятностью 0,99. 3. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения. Будем искать для среднего квадратического отклонения нормально распределенной случайной величины доверительный интервал вида (s – δ, s +δ), где s – исправленное выборочное среднее квадратическое отклонение, а для δ выполняется условие: p ( |σ – s| < δ ) = γ.
Запишем это неравенство в виде: или, обозначив
,
. (18.4) Рассмотрим случайную величину χ, определяемую по формуле
, которая распределена по закону «хи-квадрат» с п-1 степенями свободы (см. лекцию 12). Плотность ее распределения
не зависит от оцениваемого параметра σ, а зависит только от объема выборки п. Преобразуем неравенство (18.4) так, чтобы оно приняло вид χ1 < χ < χ2. Вероятность выполнения этого неравенства равна доверительной вероятности γ, следовательно,
Предполо-жим, что q < 1, тогда неравенство (18.4) можно записать так:
, или, после умножения на
,
. Следовательно,
. Тогда
Существуют таблицы для распределения «хи-квадрат», из которых можно найти q по заданным п и γ, не решая этого уравнения. Таким образом, вычислив по выборке значение s и определив по таблице значение q, можно найти доверительный интервал (18.4), в который значение σ попадает с заданной вероятностью γ. Замечание. Если q > 1, то с учетом условия σ > 0 доверительный интервал для σ будет иметь границы
. (18.5) Пример. Пусть п = 20, s = 1,3. Найдем доверительный интервал для σ при заданной надежности γ = 0,95. Из соответствующей таблицы находим q (n = 20, γ = 0,95 ) = 0,37. Следовательно, границы доверительного интервала: 1,3(1-0,37) = 0,819 и 1,3(1+0,37) = 1,781. Итак, 0,819 < σ < 1,781 с вероятностью 0,95.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.