1 T-Tо¦ВтАв¦- (930120)

Файл №930120 1 T-Tо¦ВтАв¦- (Ответы на теория к экзамену)1 T-Tо¦ВтАв¦- (930120)2013-08-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

1 билет 1.Случайное испытание – эксперимент, исход которого нельзя определить однозначно условиями проведения опыта.

Элементарное событие (элементарный исход) – любой простейший (т. е. неделимый в условиях данного опыта) исход опыта. Элементарные события являются взаимоисключающими. Пространство элементарных событий (исходов) – множество всех элементарных исходов. Событием называют любой набор элементарных исходов, т. е. произвольное подмножество пространства элементарных исходов. Вероятностью события A называют отношение числа NA благоприятствующих событию A элементарных исходов к общему числу N равновозможных элементарных исходов, т. е. . Данное определение вероятности события принято называть классическим определением вероятности. Свойства: 1) ; 2) для достоверного события ; 3) если события A и B несовместны (AB = ), то .Вероятностью события A называют число P(A), равное отношению меры множества A к мере множества : . Геометрическая вероятность сохраняет свойства вероятности P(A) в условиях классической схемы. Обобщает классическое на случай бесконечного множества элементарных исходов  тогда, когда представляет собой подмножество пространства R, R2,Rn. Пусть каждому событию A (т. е. подмножеству A пространства элементарных исходов ) поставлено в соответствие число P(A). Числовую функцию P называют вероятностью ( или вероятностной мерой), если она удовлетворяет следующим аксиомам: 1)аксиома неотрицательности: 2)аксиома нормированности: расширенная аксиома сложения: для любых попарно несовместных событий A1,…,An,… справедливо равенство: P(A1+…+An+…) = P(A1)+…+P(An)+… Значение P(A) называют вероятностью события A. Вероятность удовлетворяет следующим свойствам: 1)Вероятность противоположного события: 2) Вероятность невозможного события: P() = 0Если , то 3)Вероятность заключена между 0 и 1: 4)Вероятность объединения двух событий: 5)Вероятность объединения любого конечного числа событий

Доказательство. Поскольку , то, согласно расширенной аксиоме сложения, , откуда с учетом аксиомы нормированности получаем утв. 1. Утв. 2 вытекает из равенства A = A +  и расширенной аксиомы сложения. Пусть . Тогда B = A + (B\A). В соответствии с расширенной аксиомой сложения P(B) = P(A) + P(B\A). Отсюда и из аксиомы неотриц. приходим к утв. 3. В частности, так как всегда , то с учетом аксиомы неотриц. получаем утв. 4. Поскольку , , то, используя расширенную аксиому сложения, находим и . Подставляя в первое из последних двух равенств вероятность P(B\A), выраженную из второго равенства, приходим к утв. 5. Утв. 6 можно доказать с помощью метода матем. индукции. Так, для трех событий A, B и С:

2.Математическая статистика занимается установлением закономерностей, которым подчинены массовые случайные явления, на основе обработки статистических данных, полученных в результате наблюдений. Двумя основными задачами математической статистики являются: 1)определение способов сбора и группировки этих статистических данных; 2) разработка методов анализа полученных данных в зависимости от целей исследования, к которым относятся: а) оценка неизвестной вероятности события; оценка неизвестной функции распределения; оценка параметров распределения, вид которого известен; оценка зависимости от других случайных величин и т.д.; б) проверка статистических гипотез о виде неизвестного распределения или о значениях параметров известного распределения. Для решения этих задач необходимо выбрать из большой совокупности однородных объектов ограниченное количество объектов, по результатам изучения которых можно сделать прогноз относительно исследуемого признака этих объектов. Выборка – набор объектов, случайно отобранных из генеральной совокупности. Первичная обработка результатов. Пусть интересующая нас случайная величина Х принимает в выборке значение х1 п1 раз, х2 – п2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х1, х2,…, хк называют вариантами, а п1, п2,…, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационным рядом, а перечень вариант и соответствующих им частот или относительных частот – статистическим рядом:



Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6432
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее