20 T-Tо¦ВтАв¦- (930132)
Текст из файла
20 билет
1. Первое неравенство Чебышева. Для каждой неотрицательной случайной величины X, имеющей математическое ожидание MX, при любом e>0 справедливо соотношение: . Доказательство проведем для непрерывной случайной величины X с плотностью распределения p(x). Поскольку случайная величина X является неотрицательной, то
. Так как подынтегральное выражение неотрицательно, то при уменьшении области интегрирования интеграл может только уменьшиться. Поэтому
. Заменяя в подынтегральном выражении сомножитель x на e, имеем:
. Последний интеграл представляет собой вероятность события X ³ e, и, значит, MX ³ eP{X³e}, откуда и вытекает первое неравенство Чебышева. Для дискретной случайной величины интеграл заменяется суммой. Второе неравенство Чебышева. Для каждой случайной величины X, имеющей дисперсию DX=s2, при любом e>0 справедливо:
. Доказательство. Воспользуемся первым неравенством Чебышева. Применяя к случайной величине Y=(X-MX)2 это неравенство, в котором e заменено на e2, получаем:
, что и доказывает второе неравенство Чебышева. Пусть X1, X2, …, Xn, … - последовательность случайных величин, имеющих математические ожидания mi=MXi. Последовательность X1, X2, …, Xn, … случайных величин удовлетворяет закону больших чисел (слабому), если для любого e>0:
. Иными словами, выполнение закона больших чисел отражает предельную устойчивость средних арифметических случайных величин: при большом числе испытаний они практически перестают быть случайными и совпадают со своими средними значениями Теорема Чебышева (закон больших чисел в форме Чебышева). Если последовательность X1, X2, …, Xn, … независимых случайных величин такова, что существуют MXi=mi и DXi=si2, причем дисперсии si2 ограничены в совокупности (т. е. si2 £ С < +¥), то для последовательности X1, X2, …, Xn, … выполнен закон больших чисел. Доказательство. Теорема является элементарным следствием второго неравенства Чебышева. Действительно, в силу свойств математического ожидания и дисперсии:
;
. Применяя теперь второе неравенство Чебышева к случайным величинам
, получаем для любого e>0:
.Т.е. выполняется закон больших чисел.
2. Метод моментов основан на том, что начальные и центральные эмпирические моменты являются состоятельными оценками соответственно начальных и центральных теоретических моментов, поэтому можно приравнять теоретические моменты соответствующим эмпирическим моментам того же порядка. Если задан вид плотности распределения f(x, Θ), определяемой одним неизвестным параметром Θ, то для оценки этого параметра достаточно иметь одно уравнение. Например, можно приравнять начальные моменты первого порядка: , получив тем самым уравнение для определения Θ. Его решение Θ* будет точечной оценкой параметра, которая является функцией от выборочного среднего и, следовательно, и от вариант выборки: Θ = ψ (х1, х2, …, хп). Если известный вид плотности распределения f(x, Θ1, Θ2 ) определяется двумя неизвестными параметрами Θ1 и Θ2, то требуется составить два уравнения, например ν1 = М1, μ2 = т2. Отсюда
- система двух уравнений с двумя неизвестными Θ1 и Θ2. Ее решениями будут точечные оценки Θ1* и Θ2* - функции вариант выборки: Θ1 = ψ1 (х1, х2, …, хп), Θ2 = ψ2(х1, х2, …, хп).
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.