4 ¦СTо¦ВтАв¦- (930138)
Текст из файла
Билет 4
1.Условной вероятностью события A при условии (наступлении) события B называют отношение вероятности пересечения событий A и B к вероятности события B: . При этом предполагают, что
. Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A). Теорема умножения вероятностей. Пусть событие A=A1A2…An (т. е. A – пересечение событий A1, A2,…, An) и P(A)>0. Тогда справедливо равенство: P(A) = P(A1) P(A2|A1) P(A3|A1A2) … P(An|A1A2,,,An-1), называемое формулой умножения вероятностей. P(A/B) Условной вероятностью наступления события A, при условии события B, называется вероятность наступления события A в результате испытаний, если известно, что в это испытании произошло событие B. Действительно, в данном испытании произошло одно из t событий, входящих в B. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в B равна 1/t. Тогда по классическому определению вероятности, в данном испытании событие A произойдет с вероятностью r/t.
Назовем условной вероятностью р(В/А) события В вероятность события В при условии, что событие А произошло. Теорема 2.3 (теорема умножения). Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло: р (АВ) = р (А) · р (В/А). Доказательство. Воспользуемся обозначениями теоремы 2.1. Тогда для вычисления р(В/А) множеством возможных исходов нужно считать тА (так как А произошло), а множеством благоприятных исходов – те, при которых произошли и А, и В ( тАВ ). Следовательно,
откуда следует утверждение теоремы. Независимые события Определение 2.3. Событие В называется независимым от события А, если появление события А не изменяет вероятности В, то есть р (В/А) = р (В). Замечание. Если событие В не зависит от А, то и А не зависит от В. Действительно, из р (А) · р (В/А) = р (В) · р (А/В) следует при этом, что р (А) · р (В) = р (В) · р (А/В), откуда р (А/В) = р (А). Значит, свойство независимости событий взаимно.
2. Метод наибольшего правдоподобия. Пусть Х – дискретная случайная величина, которая в результате п испытаний приняла значения х1, х2, …, хп. Предположим, что нам известен закон распределения этой величины, определяемый параметром Θ, но неизвестно численное значение этого параметра. Найдем его точечную оценку. Пусть р(хi, Θ) – вероятность того, что в результате испытания величина Х примет значение хi. Назовем функцией правдоподобия дискретной случайной величины Х функцию аргумента Θ, определяемую по формуле: L (х1, х2, …, хп; Θ) = p(x1,Θ)p(x2,Θ)…p(xn,Θ). Тогда в качестве точечной оценки параметра Θ принимают такое его значение Θ* = Θ(х1, х2, …, хп), при котором функция правдоподобия достигает максимума. Оценку Θ* называют оценкой наибольшего правдоподобия. Поскольку функции L и lnL достигают максимума при одном и том же значении Θ, удобнее искать максимум ln L – логарифмической функции правдоподобия. Для этого нужно: найти производную ; приравнять ее нулю (получим так называемое уравнение правдоподобия) и найти критическую точку; найти вторую производную
; если она отрицательна в критической точке, то это – точка максимума. Достоинства метода наибольшего правдоподобия: полученные оценки состоятельны (хотя могут быть смещенными), распределены асимптотически нормально при больших значениях п и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра Θ существует эффективная оценка Θ*, то уравнение правдоподобия имеет единственное решение Θ*; метод наиболее полно использует данные выборки и поэтому особенно полезен в случае малых выборок. Недостаток метода наибольшего правдоподобия: сложность вычислений. Для непрерывной случайной величины с известным видом плотности распределения f(x) и неизвестным параметром Θ функция правдоподобия имеет вид: L (х1, х2, …, хп; Θ) = f(x1,Θ)f(x2,Θ)…f(xn,Θ). Оценка наибольшего правдоподобия неизвестного параметра проводится так же, как для дискретной случайной величины.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.