14 T-Tо¦ВтАв¦- (930125)
Текст из файла
14 билет
Определение и свойства функции распределения сохраняются и для непрерывной случайной величины, для которой функцию распределения можно считать одним из видов задания закона распределения. Но для непрерывной случайной величины вероятность каждого отдельного ее значения равна 0. Это следует из свойства 4 функции распределения: р(Х = а) = F(a) – F(a) = 0. Поэтому для такой случайной величины имеет смысл говорить только о вероятности ее попадания в некоторый интервал. Вторым способом задания закона распределения непрерывной случайной величины является так называемая плотность распределения (плотность вероятности, дифферен-циальная функция). Определение 5.1. Функция f(x), называемая плотностью распределения непрерывной случайной величины, определяется по формуле: f (x) = F′(x), (5.1) то есть является производной функции распределения. Свойства плотности распределения. f(x) ≥ 0, так как функция распределения является неубывающей. , что следует из определения плотности распределения. Вероятность попадания случайной величины в интервал (а, b) определяется формулой
Действительно,
(условие нормировки). Его справедливость следует из того, что
а
так как
при
Таким образом, график плотности распределения представляет собой кривую, располо-женную выше оси Ох, причем эта ось является ее горизонтальной асимптотой при
(последнее справедливо только для случайных величин, множеством возможных значений которых является все множество действительных чисел). Площадь криволинейной трапеции, ограниченной графиком этой функции, равна единице. Определение 7.5. Дисперсией (рассеянием) случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания: D(X) = M (X – M(X))². (7.6) Теорема 7.1. D(X) = M(X ²) – M ²(X). (7.7) Доказательство. Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду: D(X) = M(X – M(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(X)·M(X) + M²(X) = M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать. Свойства дисперсии. Дисперсия постоянной величины С равна нулю: D (C) = 0. (7.8) Доказательство. D(C) = M((C – M(C))²) = M((C – C)²) = M(0) = 0. Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат: D(CX) = C²D(X). (7.9) Доказательство. D(CX) =M((CX – -M(CX))²) = M((CX – CM(X))²) = M(C²(X – M(X))²) = C²D(X). Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X + Y) = D(X) + D(Y). (7.10) Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) + M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y). Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий. Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(X – Y) = D(X) + D(Y). (7.11) Доказательство. D(X – Y) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X). Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением. Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:
. (7.12) Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно
Определение 7.7. Математическим ожиданием непрерывной случайной величины называется
(7.13) Замечание 1. Общее определение дисперсии сохраняется для непрерывной случайной величины таким же, как и для дискретной (опр. 7.5), а формула для ее вычисления имеет вид:
(7.14) Среднее квадратическое отклонение вычисляется по формуле (7.12). Замечание 2. Если все возможные значения непрерывной случайной величины не выходят за пределы интервала [a, b], то интегралы в формулах (7.13) и (7.14) вычисля-ются в этих пределах.
При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. Поэтому в таком случае лучше пользоваться интервальными оценками, то есть указывать интервал, в который с заданной вероятностью попадает истинное значение оцениваемого параметра. Разумеется, чем меньше длина этого интервала, тем точнее оценка параметра. Поэтому, если для оценки Θ* некоторого параметра Θ справедливо неравенство | Θ* - Θ | < δ, число δ > 0 характеризует точность оценки ( чем меньше δ, тем точнее оценка). Но статистические методы позволяют говорить только о том, что это неравенство выполняется с некоторой вероятностью. Определение 18.1. Надежностью (доверительной вероятностью) оценки Θ* параметра Θ называется вероятность γ того, что выполняется неравенство | Θ* - Θ | < δ. Если заменить это неравенство двойным неравенством – δ < Θ* - Θ < δ, то получим: p ( Θ* - δ < Θ < Θ* + δ ) = γ. Таким образом, γ есть вероятность того, что Θ попадает в интервал ( Θ* - δ, Θ* + δ). Определение 18.2. Доверительным называется интервал, в который попадает неизвестный параметр с заданной надежностью γ.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.