Главная » Просмотр файлов » А.Н. Яковлев - Введение в вейвлет преобразования

А.Н. Яковлев - Введение в вейвлет преобразования (1275343), страница 8

Файл №1275343 А.Н. Яковлев - Введение в вейвлет преобразования (Яковлев А.Н. - Введение в вейвлет преобразования) 8 страницаА.Н. Яковлев - Введение в вейвлет преобразования (1275343) страница 82021-11-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

, (2.21)

где – число отсчетов импульсной характеристики фильтра.

В соответствии с (2.21) и (2.7) на выходе фильтров будут ВЧ и НЧ компоненты сигнала:

, .

Рис. 2.13

Из сопоставления (2.21) и (2.16) следует, что для вычисления коэффициентов и (на первом этапе ) аргументы ве­со­вых коэффициентов фильтров и должны быть взяты с обратным знаком (порядком следования), т.е.
и . Такие фильтры называются транспонированными.

Так как фильтры пропускают только половину всех частотных компонентов сигнала, то не попавшие в полосу прозрачности составляющие могут быть удалены. Поэтому во вторых блоках схемы выполняется децимация , т.е. прореживание в два раза (из-за множителя 2 при аргументе в формулах (2.16)):

, .

Правая часть схемы рис. 2.13 осуществляет вейвлет-реконструкцию сигнала. Эта процедура использует операции интерполяции и фильтрации фильтрами реконструкции и . Операция интерполяции , обратная децимации , осуществляется путем увеличения в два раза числа составляющих добавлением нулевых компонентов вперемежку с имеющимися. При сложении сигналов ( и ), полученных на выходе фильтров и , будем иметь сигнал , близкий к исходному , т.е. произойдет его реконструкция на начальном уровне.

Для последующей итерации ( используются значения с предыдущей и т.д. до .

Схема многошаговой итерационной процедуры анализа синтеза показана на рис. 2.14, где представлены диаграммы (а) и структура (б) многошагового алгоритма декомпозиции и реконструкции сигнала, называемого алгоритмом Малла (Mallat). Здесь для наглядности сигнал представлен 512 отсчетами ( ).

Рис. 2.14

Таким образом, БВП во временной и частотной областях – это две стороны единой многошаговой структуры, позволяющей быстро осуществить как декомпозицию, так и реконструкцию сигнала.

Следовательно, при частотном подходе к дискретному ВП можно использовать прежние функции, например, (2.18)–(2.20), но вместо имени вейвлета (‘wname’) в качестве входного аргумента должны быть заданы соответствующие НЧ и ВЧ фильтры разложения и восстановления: , , , .

Основные функции дискретного ВП в пакете Wavelet Toolbox приведены в прил. 2. Для просмотра коэффициентов фильтров (совместно с вейвлетом) достаточно исполнить команду «wavemenu» и в появившемся окне с описанием разделов ВП нажать кнопку «Wavelet Display». Выводится следующее окно, в котором, выбрав имя, «wname », можно просмотреть коэффициенты фильтров декомпозиции (low-pass, high-pass) и реконструкции ( , ). На рис. П.1 дан пример для вейвлета . Количественные данные о вейвлет-фильтрах можно получить в командном режиме с помощью простых команд, например (длина вектора коэффициентов), (сумма коэффициентов), (норма вектора коэффициентов) и др. Например, загружая командой фильтр Добеши , получим:

>> load db4

>> db4

db4 = 0.1629 0.5055 0.4461 – 0.0198 – 0.1323 0.0218 0.0233 – 0.0075

>> length (db4)

ans = 8

>>sum(db4)

ans = 1.0000

>>norm(db4)

ans = 0.7071

Примечание. Коэффициенты вейвлет-фильтра даны с учетом нормировки – множителя .

Следующий пример командой загружает вейвлет , строит его график и графики вейвлет-коэффициентов и коэф­фициентов фильтров декомпозиции и реконструкции (рис. 2.16):

function db4

load db4; w = db4; iter = 10; wav = 'db4';

[phi,psi,xval] = wavefun(wav,iter);

subplot(321); plot(xval,psi); title('Wavelet');

Рис. 2.15

subplot(322); stem(w); title('Original scaling filter');

[Lo_D, Hi_D, Lo_R, Hi_R] = orthfilt(w);

subplot(323); stem(Lo_D); title('Decomposition low-pass filter');

subplot(324); stem(Hi_D); title('Decomposition high-pass filter');

subplot(325); stem(Lo_R); title('Reconstruction low-pass filter');

subplot(326); stem(Hi_R); title('Reconstruction high-pass filter');

end

2.7. Пакетные вейвлеты
и вейвлет-алгоритмы

При рассмотрении БВП по алгоритму Малла на каждом шаге происходит октавополосное «расщепление» (splitting) сигнала на ВЧ и НЧ составляющие и «отсечение» ВЧ составляющей. Причина такого подхода заключена в неявном предположении, что НЧ область содержит больше информации об исходном сигнале, чем ВЧ область. В результате получается «однобокое» дерево (рис. 2.10 ). Такое предположение оправдано для многих реальных сигналов, однако для некоторых оно не выполняется.

Р. Койфман и М. Викерхаузер усовершенствовали алгоритм Малла, предложив применить процесс расщепления как для НЧ, так и ВЧ составляющих сигнала. В результате получается «полное» (бинарное или сбалансированное) дерево, представленное на рис. 2.16, а.

а б

Рис. 2.16

Ветвям дерева будет соответствовать набор подпространств сигнала с базисами, построенными, как и для однобокого дерева, согласно КМА. Функции и фильтры, порождающие эти базисы, называются соответственно вейвлет-пакетами и пакетными фильтрами.

На рис. 2.17 в качестве примера приведены начальные пакетные вейвлеты для функции Добеши .

Если исходные вейвлет-фильтры ортогональны, то и схема любой конфигурации дерева является ортогональной, поскольку она есть каскадное соединение ортогональных фильтров.

На основе вводимой функции стоимости можно определить наилучший путь по дереву (рис. 2.16, а) с возможностью отсечения части ветвей (рис. 2.16, б). Таким образом, получается базис и ВП, адаптированные к сигналу. При этом адаптация не требует обучения или знания статистических свойств сигнала. Разработан ряд методов для выбора оптимального или квазиоптимального дерева.

Рис. 2.17

В качестве функции стоимости используется энтропия. Существует много разных определений энтропии, например, определение по Шеннону (Shannon)

, (2.22)

или через логарифм энергии

.

Однако суть у них одна – большая энтропия свидетельствует о «размазанности» сигнала по базисным функциям; малая энтропия имеет место тогда, когда большая часть нормы сигнала сосредоточена на малом числе базисных функций. В последнем случае информация о сигнале (изображении) может быть существенно сжата.

Алгоритм построения наилучшего дерева состоит в следующем. Первоначально анализируются пары узлов, имеющих общий корень. Если при переходе от корня к узлам энтропия не уменьшается, то эта пара заменяется на корень, т. е. по сути отсекается [8]. Процедура рекурсивно продолжается по достижении вершины дерева.

Рис. 2.18

Рис. 2.18 иллюстрирует наилучшее дерево (слева) по критерию энтропии, выведенное на экран при анализе звукового сигнала (см. пример 2.4):

Function ss_tree

load mtlb; x = mtlb(1:200); wpt = wpdec(x,3,'db1');

wpt = wpsplt(wpt, [3 0]); plot(wpt)

bst = besttree(wpt); plot(bst);

Это дерево действительно короче полного. Справа на рисунке дан исходный сигнал – временная зависимость в узле (0,0). Для получения графика в любом узле надо установить указатель мыши на этом узле и щелкнуть левой клавишей мыши.

Возможен упрощенный вариант [7, 8], состоящий в подборе оптимальной высоты (уровня) полного дерева, при которой энтропия минимальна. Известны и другие алгоритмы ВП с использованием вейвлет-пакетов [1, 3, 7, 8].

Пакетные вейвлет-алгоритмы встроены в Wavelet Toolbox. Функции одно– и двумерного пакетного вейвлет-анализа и синтеза, вычисления энтропии, определения наилучшего дерева по критерию энтропии и другим приведены в прил. 2 (П.2.5).

2.8. Удаление шумов
и компрессия сигналов

Традиционно для решения этих задач применяется известный из практики фильтрации метод подавления высокочастотных составляющих спектра. Этот метод был использован в примерах 2.2 и 2.3.

Кроме того, с использованием вейвлетов есть еще один метод – ограничение уровня детализирующих коэффициентов. Задав определенный порог для их уровня и «отсекая» коэффициенты ниже этого порога, можно значительно снизить уровень шума и сжать сигнал или изображение. Это равносильно заданию оптимального пути по дереву ВП (см. п. 2.7). Возможны различные типы порогов ограничения: мягкий или гибкий и твердый или жесткий (рис. 2.19). При этом устанавливаются различные правила выбора порога: адаптивный порог, эвристический, минимаксный и др.

Но самое главное состоит в том, что пороговый уровень можно устанавливать для каждого коэффициента отдельно. Это позволяет строить адаптивные к изменениям сигнала (изображения) способы очистки от шума и компрессии.

Подробно познакомиться с этими проблемами и приобрести определенные навыки читатель может с помощью демонстрационных примеров, работая с подразделами De-noise и Compression интерфейса GUI.

Характеристики

Тип файла
Документ
Размер
13,98 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее