А.Н. Яковлев - Введение в вейвлет преобразования (1275343), страница 12
Текст из файла (страница 12)
В настоящее время самым мощным источником информации является Интернет. Поэтому полезно знакомство с Интернет-сайтами, посвященными вейвлетам. Ниже приведены некоторые сайты по рассматриваемым вопросам:
http://www.wavelet.org. – на этом сайте можно познакомиться с самыми последними книгами, статьями и диссертациями, узнать о предстоящих конференциях, задать вопрос по интересующей проблеме.
http://www.mathsoft.com/wavelet.html – сайт содержит огромный список публикаций по теории и приложениям вейвлетов.
http://playfair.stanford.edu/~wavelab – на этом сайте имеется обширная библиотека программ для Mathlab, которые распространяются бесплатно.
http://www.math.spbu.ru/~dmp – сайт Санкт-Петербургского семинара «Всплески и их применения», на котором можно получить сведения о русскоязычных публикациях и о российских конференциях по данной тематике.
http://www.wavelet.narod.ru – «Русский Вейвлет_Дайджест» – на этом сайте много сведений по ВП; в разделе «Люди» перечислены ученые и специалисты, работающие в области теории и применения ВП.
Подробный список Интернет-адресов имеется в [1]. Многие поисковые системы, например, такие как www.rambler.ru, www.aport.ru, и другие выдают сотни ссылок на Интернет-сайты, посвященные вейвлетам, ВП и их применению; при этом для поиска русскоязычных материалов следует задавать слово «вейвлеты» (или «вэйвлеты») на русском языке.
Приложение 1
Графический интерфейс пользователя GUI
Wavelet Toolbox MATLAB
Сведения о большинстве вейвлетов и различных вейвлет-преобразованиях можно получить, работая с графическим интерфейсом пользователя GUI (Graphic User Interfice). Здесь же приведено много демонстрационных примеров по вейвлет-анализу (декомпозиции), вейвлет-синтезу (реконструкции сигналов, их очистке от шумов и сжатию (компрессии).
П1.1. Основные разделы GUI и работа с ним
Для доступа к GUI необходимо исполнить команду .
При этом появляется окно со списком разделов ВП. Активируя мышью соответствующий раздел, можно детально ознакомиться с его содержанием и приобрести навыки работы со средствами пакета Wavelet Toolbox.
Рассмотрим основные разделы в порядке следования материала глав 1 и 2.
Wavelet Display – просмотр вейвлетов. Нажатие этой кнопки выводит окно, в котором слева расположено основное поле для графиков, а справа – подменю управления, в котором имеются кнопки для выбора типа вейвлета и получения необходимых сведений о нем.
На рис П.1 дано окно с данными о вейвлете Добеши db4. В основном поле выведены графики функций и
(т.е. отцовский и материнский вейвлеты) и коэффициенты НЧ и ВЧ фильтров декомпозиции и реконструкции (
и
). Цвет основного поля обращен для уменьшения красителя принтера. Справа в окне можно установить: тип вейвлета (Wavelet), степень итерационного уточнения (Refiniment), запуск просмотра данных о выбранном вейвлете (Display), просмотр информации о вейвлете с именем Name (Name wavelets), просмотр общей информации (Wavelets).
В нижнем правом углу имеется кнопка View Axes. Её активизация выводит окно с кнопками, расположение которых соответствует положению графиков. Активизация какой-либо из них вызовет соответствующий график в увеличенном масштабе. Левой кнопкой мыши можно выделить его часть и с помощью кнопок панели инструментов (под окном графика) произвести соответствующее преобразование по осям.
Wavelet Packet Display – просмотр пакетных вейвлетов (haar, db, sym, coif, dmey), осуществляемый аналогично просмотру обычных вейвлетов. Здесь
выводятся графики phi –функций и psi –функций
и т.д.
Continuous Wavelet 1-D – непрерывное одномерное ВП. Активизируя позиции File, Demo Analysis, открываем подменю с 15 примерами этого раздела. Выбираем первый из них: рис. П.2 дает результат анализа. На основном поле выведены графики: анализируемого сигнала (Analyzed Signal), спектральных коэффициентов (Coefficients Ca,b), линии значений коэффициетов на уровне
Рис. П.1
Рис. П.2
(Coefficients Line Ca,b for scale
) и линии выделения экстремумов (Local Maxima Lines). Кнопки правой части позволяют выбрать тип и порядок вейвлета и соответствующие параметры вейвлет-технологии. Пользуясь опциями Selected Axes, можно вывести лишь часть графиков, например один, но в укрупненном масштабе.
Complex Continuous Wavelet 1-D – непрерывное одномерное ВП с использованием комплексных вейвлетов ( Сomplex Gaussian – cdau, Shannon – shau, Frequecy Bspline – fbsp, Complex Morlet – cmor). Правая часть поля окна та же, что и в предыдущем случае, а в основном поле выводятся графики: анализируемого сигнала (Analyzed Signal), модуля (Moduls) и фазы (угла – Angle) коэффициентов, модуля и фазы коэффициентов на определенном уровне, линий локальных максимумов модуля и фазы. Раздел содержит 7 примеров.
Wavelet 1-D – дискретное одномерное ВП. Активизируя опции File, Demo Analysis, получаем подменю с 32 файлами – примерами. Рис. П.3 демонстрирует вейвлет-обработку сложного сигнала (Electrical consumption).
Верхняя часть панели управления, как и в прежних разделах, позволяет сменить тип вейвлета (haar, db, coif, bior, rbio, dmey), а также уровень (level от 1 до 11) анализа. С помощью кнопки Analyze осуществляется анализ и на основное поле выводятся графики сигнала (s), аппрксимирующих (an) и детализирующих (dn,…,d1) коэффициентов.
Под кнопкой Analyze расположены четыре очень важные кнопки, выводящие следующие окна: Statistics – статистика, Histograms – гистограммы, Compress – компрессия сигнала, De-noise – очистка сигнала от шума.
Рис.П.3
Statistics. Эта кнопка открывает окно с данными статистики – обычной и комулятивной гистограммами. Соответствующими кнопками устанавливается объект анализа: исходный сигнал (Original signal), синтезированный сигнал (Synthesized signal), коэффициенты аппроксимации (Approximation), детализирующие коэффициенты (Deteil). Для коэффициентов устанавливается также уровень level. На рис. П.4 приведен сигнал (соответствующий рис. П.3) и его гистограмма и комулятивная гистограмма. Под гистограммами приведены значения основных параметров статистического анализа.
Рис. П.4
Histograms. Щелчок мыши на этой кнопке дает детальные гистограммы сигнала и вейвлет-коэффициентов.
Сompress. Это окно компрессии (сжатия) выбранного сигнала В правой части окна можно указать способ компрессии: с глобальным порогом (Global thresholding ) или c локальными порогами (By level thresholding – рис. П.6) и выставить пороги. Для глобального порога (рис.П.5) можно задать его тип (Select thresholing): Scarce high-Scarce medion – Scarce Low – Belance sparsity-nrm – Remore near 0. Для локальных порогов (рис. П.6) можно установить свой порог (ползунковым регулятором) по каждому из коэффициентов. На диаграммах коэффициентов ,
(в левой части поля рис. П.6) эти пороги показаны пунктирными линиями. Ползунковый регулятор Sparsity пропорционально изменяет уровни всех порогов.
Рис. П.5
Рис. П.6
De-noise. Окно очистки сигнала от шума аналогично окну компрессии (для случая компрессии с локальными порогами). И это понятно, так как обе процедуры обработки сигнала реализуются одними и теми же методами и порой общими функциями. Жесткий порог устанавливается обцией hard, а мягкий – soft. В окне имеется также выпадающий список типового шумового «обрамления» сигнала (типа подмешиваемого к сигналу шума).
Wavelet Packets 1-D – одномерное ДВП с использованием пакетных вейвлетов. В разделе содержится 17 примеров. На рис. П.7 рассмотрен пример для сигнала mishmash. В левом поле окна выведено 4 графика: дерево декомпозиции (Decomposition Tree); под ним – коэффициет в узле (3.0) (Packet: (3,0)), получаемый активизацией этого узла дерева; анализируемый сигнал (Analyzed Signal); а под ним коэффициенты (Colored Coefficient …).
Элементы правой части окна позволяют выбрать различные типы энтропии (shannon, threshold, norm, log energy, sure, user), типы дерева (полное – Initial, вейвлетное – Wavelet, наилучшее – Best, с наилучшим порогом – Best Level), осуществить анализ (Analized), компрессию (Compress) и очистку от шума (De-noise).
Рис. П.7
Wavelet 2-D – двумерное ДВП. Раздел содержит 17 примеров. На рис. П.8 приведен первый из них. В левом верхнем углу дано исходное изображение плита с рисунком магического квадрата, а в нижнем правом углу – вейвлет-разложение (dwt) третьего уровня. Слева в нижнем углу показана реконструкция сигнала, осуществленная операцией обратного ДВП (idwt). Верхнее правое
Рис. П.8
Рис. П.9
окно дает возможность просмотра любого фрагмента декомпозиции, выделенного мышью с последующим щелчком на кнопке Visualize. Кнопки Full Size иReconstruct позволяют вывести в максимальном размере соответственно исходное и реконструированное изображение. Остальные элементы управления в правой части окна аналогичны таковым для окна Wavelet 1-D.