Лекции по функциональному анализу - Константинов (1187976), страница 38
Текст из файла (страница 38)
¯à¥¤¥«¨¬ ¬®¦¥á⢮ E0 = E\Fm .m=0®£¤ µ(E\E0 ) = 0. ¬®¦¥á⢥ E0 ®¯à¥¤¥«¨¬ ¯®á«¥¤®¢ ⥫ì®áâ쨧¬¥à¨¬ëå äãªæ¨© gm = fm − f1 ¨ h = f − f1 . ® ®¯à¥¤¥«¥¨î E0 ¨¬¥¥¬ 0 = g1 ≤ g2 ≤ g3 ≤ . . . , ¯à¨çñ¬ gm (x) → h(x) ¤«ï «î¡®£®x ∈ E0 . «¥¤®¢ ⥫ì®, ¯® ⥮६¥ 4.3.2 ¯®«ãç ¥¬Zlimm→∞E0Zgm dµ =h dµ.E0 ª ª ª ¯® ⥮६¥ 4.3.3 ¨¬¥¥¬ZZgm dµ =E0Zfm dµ −E0f1 dµ =E0Z=Zfm dµ −Eâ® ¯®«ãç ¥¬ ¥à ¢¥á⢮¢¥¤«¨¢® ¢ª«î票¥Zf1 dµ ≤ M −ERE0h dµ ≤ M0 < +∞.h ∈ L(E0 ).f1 dµ = M0 ≥ 0,E«¥¤®¢ ⥫ì®, á¯à -®í⮬㠯® ⥮६¥ 4.3.3 ¨¬¥¥¬ 220E0 á®®â®è¥¨¥ f = h + f1¯®«ãç ¥¬ f ∈ L(E). ®£¤ ZZf dµ =E ¢ ᨫã ã⢥ত¥¨ï 4.3.5Zh dµ +E0∈ L(E0 ),f1 dµ =E0ZZZ= limfm dµ − f1 dµ + f1 dµ =m→∞E0E0Z= limm→∞E0E0Zfm dµ = limfm dµ,m→∞Eçâ® ¨ âॡ®¢ «®áì. ¥ ® à ¥ ¬ 4.3.4 ( âã). ãáâì ¬®¦¥á⢮ E ∈ M, ¯®á«¥¤®¢ ⥫ì®áâì ¨§¬¥à¨¬ëå äãªæ¨© fm : X → [0, +∞], ¨§¬¥à¨¬ ï äãªæ¨ï f : X → [0, +∞], ¯à¨çñ¬ f (x) = lim fm (x), x ∈ X .
®£¤ á¯à RRm→∞¢¥¤«¨¢® ¥à ¢¥á⢮ f dµ ≤ lim fm dµ.m→∞ EE ® ª § â ¥ « ì á â ¢ ®. ¯à¥¤¥«¨¬ ¤«ï «î¡®£® m ∈ N ¥®âà¨æ ⥫ìãî ¨§¬¥à¨¬ãî äãªæ¨î gm (x) = inf fk (x), x ∈ X . ®£k≥m¤ ¤«ï «î¡®£® x ∈ X ¨¬¥¥¬ 0 ≤ g1 (x) ≤ g2 (x) ≤ . . . ¨ f (x) == lim gm (x) ¤«ï ¢á¥å x ∈ X . «¥¤®¢ ⥫ì®, ¯® ⥮६¥ 4.3.2 ¯®m→∞RR«ãç ¥¬ m→∞lim gm dµ = f dµ. ª ª ª ¤«ï «î¡ëå m ∈ N ¨ x ∈ XEEá¯à ¢¥¤«¨¢® ¥à ¢¥á⢮ gm (x) ≤ fm (x), â®R ¢ ᨫã ã⢥ত¥¨ï4.3.8R¤«ï «î¡®£® m ∈ N ¯®«ãç ¥¬ ¥à ¢¥á⢮ gm dµ ≤ fm dµ. «¥¤®RRREER¢ ⥫ì®, f dµ = m→∞lim gm dµ = lim gm dµ ≤ lim fm dµ, çâ®m→∞ Em→∞ EEE¨ âॡ®¢ «®áì. « ¥ ¤ á â ¢ ¨ ¥ 4.3.6.
ãáâì ¬®¦¥á⢮ E ∈ M, ¯®á«¥¤®¢ ⥫ì®áâì ¨§¬¥à¨¬ëå äãªæ¨© fm : X → R∪{±∞} â ª®¢ , çâ® fm ∈ L(E)¤«ï ¢á¥å m ∈ N, ¨ ¤«ï ¯®ç⨠¢á¥å x ∈ E áãé¥áâ¢ã¥â m→∞lim fm (x) == f (x) ∈ R ∪ {±∞}. ®£¤ , ¥á«¨ áãé¥áâ¢ã¥â ¯®«®¦¨â¥«ì®¥ç¨á«®RM , â ª®¥, çâ® ¤«ï ¢á¥å m ∈ N ¢ë¯®«¥® ¥à ¢¥á⢮ |fm | dµ ≤ M ,â® á¯à ¢¥¤«¨¢ë ¢ª«î票¥ f∈ L(E)221¨ ¥à ¢¥á⢮RE|f | dµ ≤ M .E ® ª § â ¥ « ì á â ¢ ®.
¯à¥¤¥«¨¬ ¨§¬¥à¨¬®¥ ¬®¦¥á⢮nE0 =¯o¯x ∈ E ¯ ∃ lim fm (x) = f (x) .m→∞®£¤ ¯® ãá«®¢¨î µ(E\E0 ) = 0 ¨ |fm (x)| → |f (x)| ¯à¨ m → ∞ ¤«ï¢á¥å x ∈RE0 . «¥¤®¢ ⥫ì®,¯® ⥮६¥ 4.3.4 âã ¯®«ãç ¥¬ ¥à R¢¥á⢠|f | dµ ≤ lim |fm | dµ ≤ M , çâ® ®§ ç ¥â |f | ∈ L(E0 ). ®m→∞ E0E0ã⢥ত¥¨î 4.3.11 íâ® à ¢®á¨«ì® ¢ª«î票î f ∈ L(E0 ), ¢ á¨4.3.5 ¯®«ãç ¥¬ ¢ª«î票¥ f ∈ L(E) ¨ á®®â®è¥¨¥R«ã ã⢥ত¥¨ïR|f | dµ = |f | dµ ≤ M , çâ® ¨ âॡ®¢ «®áì.EE0 à ¨ ¬ ¥ à 4.3.2. ãáâì ¬®¦¥á⢮ E ∈ M, ¯®á«¥¤®¢ ⥫ì®áâ쯮ç⨠¢áî¤ã ¬®¦¥á⢥ E á室¨âáï ª¯ äãªæ¨¨¯ f ∈¯R¯L(E). ãáâì áãé¥áâ¢ã¥â ç¨á«® M > 0, â ª®¥, çâ® ¯¯ fm dµ¯¯ ≤ Mfm ∈ L(E)∈E¤«ï ¢á¥å m.
ਠí⮬ ¬®¦¥â ®ª § âìáï, çâ® ¨¬¥¥â ¬¥á⮯¯¯R¯¯ f dµ¯ >¯¯E> M . áᬮâਬ E = [0, 1] ¤«ï «î¡®£® m ∈ N ¯à®áâãî äãªæ¨îfm : [0, 1] → R ¢¨¤ £1 ¤,1 ,1,x∈ mfm (x) =£¢11 − m, x ∈ 0, m.®£¤ ¤«ï «î¡®£® m ∈ N ¯®«ãç ¥¬ZZfm dµ =[0,1]Zdµ −[ m1 ,1](m − 1) dµ = 1 −11− (m − 1) = 0.mm[0, m1 )à¨m → ∞ ¨¬¥¥¬ fm (x) → 1 = f (x) ¤«ï «î¡®£®¯ x ∈ (0, 1]¯ . á®,¯ R¯R¯¯çâ®f dµ = 1. «¥¤®¢ ⥫ì®, ¯®«ãç ¥¬ 0 = ¯fm dµ¯ < 21 =¯¯[0,1][0,1]¯¯¯ R¯¯¯=M <1=¯f dµ¯, çâ® ¨ âॡ®¢ «®áì.¯[0,1]¯ ¥ ® à ¥ ¬ 4.3.5 (¥¡¥£, ®¡ ®£à ¨ç¥®© á室¨¬®áâ¨). ãáâì ¬®¦¥á⢮ E ∈ M, ¯®á«¥¤®¢ ⥫ì®áâì ¨§¬¥à¨¬ëå äãªæ¨©fm : X → R ∪ {±∞}222¯®ç⨠¢áî¤ã E á室¨âáï ª äãªæ¨¨ f .
ãáâì áãé¥áâ¢ã¥â ¨§¬¥à¨¬ ï äãªæ¨ï g: X → [0, +∞], â ª ï, çâ® g ∈ L(E), ¨ ¤«ï ¯®ç⨢á¥å x ∈ E ¨ ¢á¥å m ∈ N á¯à ¢¥¤«¨¢® ¥à ¢¥á⢮ |fm (x)| ≤ g(x).®£¤ á¯à ¢¥¤«¨¢ë ¢ª«î票ï fm ∈ L(E) ¤«ï ¢á¥å m ¨ f ∈ L(E), ¨áãé¥áâ¢ã¥â ¯à¥¤¥«ZlimZfm dµ =m→∞E¢®f dµ.E ® ª § â ¥ « ì á â ¢ ®. «ï «î¡®£® m ∈ N à áᬮâਬ ¬®¦¥áânEm =¯o¯x ∈ E ¯ |fm (x)| ≤ g(x) .® ãá«®¢¨î µ(E\Em ) = 0. ᨫã á«¥¤á⢨ï 4.3.2 ¨¬¥¥¬ fm ∈ L(Em ),®âªã¤ ¯® ã⢥ত¥¨î¯ 4.3.5 ¯®«ãç ¥¬ fm ∈oL(E).
¯à¥¤¥«¨¬ ¬®n¦¥á⢮ F = x ∈ E ¯¯ ∃ m→∞lim fm (x) = f (x) . ® ãá«®¢¨î µ(E\F ) =0.ãáâì ¬®¦¥á⢮ H = F \õ∞[∞Sm=1(E\Em ).!(E\Em )m=1≤∞X á¨«ã ¥à ¢¥á⢠µ(E\Em ) = 0m=1¯®«ãç ¥¬ µ(F \H) = 0. ª ª ª E\H ⊂ (E\F ) ∪ (F \H), â® µ(E\H) == 0. «ï «î¡®£® x ∈ H ¨¬¥¥¬ |fm (x)| ≤ g(x) ¤«ï ¢á¥å m ¨ fm (x) →→ f (x) ¯à¨ m → ∞. «¥¤®¢ ⥫ì®, ¥à ¢¥á⢮ |f (x)| ≤ g(x) á¯à ¢¥¤«¨¢® ¤«ï ¢á¥å x ∈ H .
®£¤ ¯® á«¥¤á⢨î 4.3.2 ¨¬¥¥¬ f ∈ L(H),®âªã¤ ¯® ã⢥ত¥¨î¢ª«î票¥f ∈ L(E). ¯à¥¤¥¯n 4.3.5 ¯®«ãç ¥¬o¯«¨¬ ¬®¦¥á⢮ G = x ∈ E ¯ g(x) = +∞ . ® ã⢥ত¥¨î 4.3.6¯®«ãç ¥¬ µ(G) = 0. ¯à¥¤¥«¨¬ ¬®¦¥á⢮ Z = H\G. ª ª ª á¯à ¢¥¤«¨¢® ¢ª«î票¥ E\Z ⊂ G ∪ (E\H), â® ¯®«ãç ¥¬ µ(E\Z) = 0. ¬®¦¥á⢥ Z ¢á¥ äãªæ¨¨ fm , f ¨ g ª®¥çë.
ª ª ª Z ¨¬¥¥¬g + fm ≥ 0 ¨ g + fm → g + f ¯à¨ m → ∞, â® ¯® ⥮६¥ 4.3.4 â㯮«ãç ¥¬ ¥à ¢¥á⢮ZZ(g + f ) dµ ≤ limZm→∞Z(g + fm ) dµ =ZZg dµ + limZm→∞fm dµ.Z«¥¤®¢ ⥫ì®, ¢ ᨫã ⥮६ë 4.3.3 ¯®«ãç ¥¬ ¥à ¢¥á⢮ZZfm dµ.f dµ ≤ limZm→∞223Z «®£¨ç®, â ª ª ª Z ¨¬¥¥¬ g − fm ≥ 0 ¨ g − fm → g − fm → ∞, â® ¯® ⥮६¥ 4.3.4 âã ¯®«ãç ¥¬ ¥à ¢¥á⢮ZZZZ(g − f ) dµ ≤ lim(g − fm ) dµ = g dµ − limfm dµ.m→∞Z¯à¨m→∞ZZZ«¥¤®¢ ⥫ì®, ¢ ᨫã ⥮६ë 4.3.3 ¯®«ãç ¥¬ ¥à ¢¥á⢮ZZf dµ ≥ limfm dµ.m→∞ZZ ª¨¬ ®¡à §®¬, á¯à ¢¥¤«¨¢ë ¥à ¢¥á⢠ZZf dµ ≥ limm→∞ZZfm dµ ≥ limm→∞Z®âªã¤ á«¥¤ã¥â áãé¥á⢮¢ ¨¥ ¯à¥¤¥« Zfm dµ ≥Zf dµ,ZRlimm→∞fm dµ =ZRZf dµ. ªª ª µ(E\Z) =R0, â® ¢ ᨫã4.3.5R ¯®«ãç ¥¬ ¤«ï «î¡®£®R ã⢥ত¥¨ïRm à ¢¥á⢠fm dµ = fm dµ ¨ f dµ = f dµ.
«¥¤®¢ ⥫ì®,Záãé¥áâ¢ã¥â m→∞limREfm dµ =EREf dµ,ZEçâ® ¨ âॡ®¢ «®áì. « ¥ ¤ á â ¢ ¨ ¥ 4.3.7. (®¡ \ ª¢ à¨ã¬¥") ãáâì ¬®¦¥á⢮ E ∈∈ M ¨ µ(E) < +∞. ãáâì ¯®á«¥¤®¢ ⥫ì®áâì ¨§¬¥à¨¬ëå äãªæ¨©fm : X → R ∪ {±∞} ¯®ç⨠¢áî¤ã E á室¨âáï ª äãªæ¨¨ f ¨ ¯®ç⨢áî¤ã E ®£à ¨ç¥ , â. ¥. áãé¥áâ¢ã¥â ç¨á«® M > 0, â ª®¥, çâ® ¤«ï¯®ç⨠¢á¥å x ∈ E ¨ ¢á¥å m ∈ N ¢ë¯®«¥® ¥à ¢¥á⢮ |fm (x)| ≤ M .®£¤ á¯à ¢¥¤«¨¢ë ¢ª«î票ï fm ∈ L(E) ¤«ï ¢á¥å m ¨ f ∈ L(E), ¨áãé¥áâ¢ã¥â ¯à¥¤¥«ZlimZfm dµ =m→∞Ef dµ.E ® ª § â ¥ « ì á â ¢ ®. à §ã á«¥¤ã¥â ¨§ ã⢥ত¥¨ï 4.3.7 ¨â¥®à¥¬ë 4.3.5, ¥á«¨ à áᬮâà¥âì äãªæ¨î g(x) = M , x ∈ X . à ¨ ¬ ¥ à 4.3.3. ãáâì ¬®¦¥á⢮ E ∈ M, ¯®á«¥¤®¢ ⥫ì®áâì fm : X → R ∪ {±∞} ¨â¥£à¨à㥬ëå ¯® ¥¡¥£ã E äãªæ¨© ï¥âáï á室ï饩áï ¯®ç⨠¢áî¤ã ¬®¦¥á⢥ E ª äãªæ¨¨224f ∈ L(E)R .
ਠí⮬ ¬®¦¥â ®ª § âìáï, çâ® «¨¡® ª®¥ç®£® ¯à¥¤¥« m→∞lim fm dµ ¥ áãé¥áâ¢ã¥â, «¨¡® áãé¥áâ¢ã¥â ª®¥çë© ¯à¥¤¥«R ERlim fm dµ 6= f dµ. ¯à¨¬¥à, à áᬮâਬ ¬®¦¥á⢥ E =m→∞EE= [0, 1] ¤«ï «î¡®£® m ∈ N ¯®á«¥¤®¢ ⥫ì®áâì äãªæ¨© fm (x) == m2 δ[0, 1 ] (x). ®£¤ ¤«ï «î¡®£® x ∈ (0, 1] ¢ë¯®«¥® á®®â®è¥¨¥mRfm dµ = m → +∞. ¤«ïfm (x) → 0 = f (x) ¯à¨ m → ∞ , ®[0,1]¯®á«¥¤®¢ ⥫ì®á⨠äãªæ¨© fm (x) = mδ[0, ] (x) â ª¦¥ ¯®«ãç ¥¬fm (x) → 0 = f (x) ¯à¨Rm → ∞ ¤«ï «î¡®£®R x ∈ (0, 1], ¯à¨ í⮬ ¤«ï«î¡®£® m ∈ N ¨¬¥¥¬fm dµ = 1 6= 0 =f dµ.1m[0,1][0,1] ¥ ® à ¥ ¬ 4.3.6.
ãáâì M(µ) | σ-ª®«ìæ® ¨§¬¥à¨¬ëå ¯® ¥¡¥£ã ¬®¦¥á⢠¢ Rn , ¯®áâ஥®¥ ª®«ìæ¥ ª«¥â®çëå ¬®¦¥áâ¢.ãáâì ¬®¦¥á⢮ E ⊂ Rn ï¥âáï ¨§¬¥à¨¬ë¬ ¯® ®à¤ ã, äãªæ¨ï f : E → R ï¥âáï ¨â¥£à¨à㥬®© ¯® ¨¬ ã E . ®£¤ f ∈∈ L(E) ¨ ¨¬¥¥â ¬¥áâ® à ¢¥á⢮¨â¥£à «®¢¨¬ ¨ ¥¡¥£ äãªRR樨 f ¯® ¬®¦¥áâ¢ã E , â. ¥. f dx = f dµ.EE ® ª § â ¥ « ì á â ¢ ®. ᨫ㠧 ¬¥ç ¨ï 4.1.15 ¢á类¥ ¨§¬¥à¨¬®¥ ¯® ®à¤ ã ¬®¦¥á⢮ ¨§ Rn ï¥âáï ¨§¬¥à¨¬ë¬ ¯® ¥¡¥£ã, ¥£® ¬¥àë ®à¤ ¨ ¥¡¥£ ᮢ¯ ¤ îâ.
áᬮâਬ ¯®á«¥¤®¢ ⥫ì®áâì {Tm }∞m=1 ¢«®¦¥ëå ¨§¬¥«ìç îé¨åáï à §¡¨¥¨© ¬®¦¥á⢠E ¥£® ¨§¬¥à¨¬ë¬¨ ¯® ®à¤ ã ¯®¤¬®¦¥á⢠¬¨, â. ¥. ¤«ï «î¡®£®Nm ¨¬¥¥¬ Tm = {Em,k }k=1 , £¤¥ ¬®¦¥á⢮ Em,k ¨§¬¥à¨¬® ¯® ®à¤ mNSmã ¤«ï «î¡®£® k ∈ 1Nm ¨ á¯à ¢¥¤«¨¢ë á®®â®è¥¨ï: E =Em,k ,k=1Em,k ∩ Em,s = ∅ ¯à¨ k 6= s.
ਠí⮬ Tm+1 ≺ Tm , â. ¥. ¤«ï «î¡®£®k ∈ 1, Nm+1 áãé¥áâ¢ã¥â s ∈ 1, Nm , â ª®¥, çâ® Em+1,k ⊂ Em,s . ¥«ª®áâì à §¡¨¥¨ï |Tm | = max diam(Em,k ) → 0 ¯à¨ m → ∞. «ï1≤k≤N«î¡ëå m ∈ N ¨ k ∈ 1, Nm ®¯à¥¤¥«¨¬ ç¨á« Mm,k = sup f (x) ¨mLm,k = inf f (x).Em,kgm (x) =NmX áᬮâਬ ¨§¬¥à¨¬ë¥ äãªæ¨¨Mm,k δEm,k (x),hm (x) =k=1NmXk=1225x∈Em,kLm,k δEm,k (x),x ∈ E.®£¤ Rgm dµ =ENmPk=1Mm,k µJ (Em,k ) | ¢¥àåïï á㬬 à¡ã äãªæ¨¨Rf,NmPᮮ⢥âáâ¢ãîé ï à §¡¨¥¨î Tm , hm dµ =Lm,k µJ (Em,k ) |k=1E¨¦ïï á㬬 à¡ã äãªæ¨¨ f , ᮮ⢥âáâ¢ãîé ï à §¡¨¥¨î Tm .«¥¤®¢ ⥫ì®,¯® ®¯à¥¤¥«¥¨î¨â¥£à « ¨¬ ¨¬¥¥¬ à ¢¥á⢠RRRlim gm dµ = lim hm dµ = f dx.
¤à㣮© áâ®à®ë, â ª ª ªm→∞m→∞EEE¤«ï «î¡®£® m ∈ N ¢ë¯®«¥® á®®â®è¥¨¥ ¢«®¦¥®á⨠Tm+1 ≺ Tm ,â® á¯à ¢¥¤«¨¢ë ¥à ¢¥á⢠gm+1 (x) ≤ gm (x) ¨ hm+1 (x) ≥ hm (x) ¤«ï¢á¥å x ∈ E . ਠí⮬ ¯® ®¯à¥¤¥«¥¨î äãªæ¨© gm ¨ hm ¤«ï ¢á¥å x ∈∈ E â ª¦¥ ¢ë¯®«¥ë ¥à ¢¥á⢠gm (x) ≥ f (x) ≥ hm (x). â® ®§ ç ¥â, çâ® ¤«ï «î¡®£® x ∈ E áãé¥áâ¢ãî⠯।¥«ë m→∞lim gm (x) = g(x)¨ m→∞lim hm (x) = h(x), 㤮¢«¥â¢®àïî騥 ¥à ¢¥á⢠¬ g(x) ≥ f (x) ≥h(x). ®£¤ ¯® á«¥¤á⢨î 4.3.5R ¯®«ãç ¥¬,R çâ® äãªæ¨¨R g, h ∈ L(E)R ,¨¢ë¯®«¥ë à ¢¥á⢠m→∞lim gm dµ = g dµ, lim hm dµ = h dµ.m→∞EREh dµ = f dx.
®£¤ ¨§EER E¬¥à¨¬ ï äãªæ¨ï (g−h) ¥®âà¨æ ⥫ì E ¨ (g−h) dµ = 0. «¥E«¥¤®¢ ⥫ì®, ¨¬¥¥¬ à ¢¥á⢠REg dµ =RE¤®¢ ⥫ì®, ¯® á«¥¤á⢨î 4.3.4 ¯®«ãç ¥¬ g(x) − h(x) = 0 ¤«ï ¯®ç⨢á¥å x ∈ E . ® ⮣¤ f (x) = g(x) = h(x) ¤«ï ¯®ç⨠¢á¥å x ∈ E . «¥¤®¢ ⥫ì®, ¯® § ¬¥ç ¨î 4.2.2 ¯®«ãç ¥¬, çâ® äãªæ¨ï f ¨§¬¥à¨¬ E ¨ íª¢¨¢ «¥â E äãªæ¨ï¬ g ¨ h. ®£¤ R ¯® ã⢥ত¥¨îRR 4.3.5¯®«ãç ¥¬ ¢ª«î票¥ f ∈ L(E) ¨ à ¢¥á⢮ f dµ = g dµ = h dµ ==REf dx,Eçâ® ¨ âॡ®¢ «®áì.EE à ¨ ¬ ¥ à 4.3.4.