Лекции ТММ 1 (1172676), страница 23
Текст из файла (страница 23)
d D
D
q D E
E e E
f
пх B,F
А
h
пх
= 3
l4
C
Рис. 10.16
Дано: kV, HE , [ ], l0
_____________________________
Определить: li , h - ?
Угловой ход кулисы
kV - 1
3 = = 180 -------- .
kV + 1
Из АВС длина звена 1
l1 = l0 sin(3/2) = l0 sin( /2).
Из СDq длина звена 3
l3 = HE / [2sin(3/2)] = = HE / [2 sin(/2)] .
Длина звена 4 определяется по допустимому углу давления
sin = (l3 - h)/l4 sin [ ].
Принимаем dq = qf , где dq = l3 [ 1 - cos (/2)], тогда
h = l3 {1 - [ 1- cos (/2)]/2},
l4 ( l3 - h )/ sin [ ] или l4 ( l3 [ 1- cos (/2)])/(2 sin [ ]).
Оптимальный синтез рычажных механизмов.
Согласно энциклопедическому словарю, задача оптимального проектирования - это экономико-математическая задача, содержащая критерий оптимальности и ограничения и направленная на поиск лучшего в определенных условиях (т.е оптимального) значения показателя. Оптимизация - отыскание такого решения рассматриваемой задачи, которое дает экстремальное (минимальное или максимальное) значение некоторой функции, называемой целевой [ Ю.А.Казик Математический словарь. Таллин. «Валгус» 1985 ].
При оптимальном метрическом синтезе механизма необходимо определить такое сочетание его размеров (внутренние параметры), которое наилучшим образом удовлетворяет требуемым эксплуатационным и качественным показателям (критерии оптимизации и ограничивающие условия). При метрическом синтезе в качестве качественных показателей обычно используются: габариты механизма, точность обеспечения заданных положений или закона движения (функции положения или передаточной функции), условия передачи сил в КП (углы давления в КП) и другие показатели. Механизм при оптимальном проектировании характеризуется двумя n-мерными векторами: параметров и качественных показателей. На значения как парметров, так и качественных показателей могут быть наложены некоторые ограничения в виде равенств или неравенств. Ограничения могут быть:
-
параметрическими (например, ограничения на длины звеньев механизмов);
-
дискретизирующими (например, выбор размеров из стандартного ряда);
-
функциональными (например, условия проворачиваемости звеньев механизма, условия заклинивания КП).
Ограничения формируют область допустимых значений параметров, в пределах которой осуществляется поиск оптимального решения. В пределах этой области могут существовать локальные и глобальный оптимум целевой функции. Целевая функция может быть одномерной или многомерной. При многомерной оптимизации необходимо формирование сложной целевой функции, учитывающей вес каждого из качественных показателей, например, аддитивной
Ф ( G , , , ... ) = k1 G + k2 + k3 + ...
или мультипликативной функции
Ф ( G , , , ... ) = G k1 k2 k3 ...
где Ф ( G , , , ... ) - целевая функция, G - габариты механизма, - точность механизма, - углы давления в КП механизма, ki - весовые коэффициенты при качественных показателях.
На рис. 10.17 представлена целевая функция при однопараметрической оптимизации ( р - параметр оптимизируемой системы ). Ограничения по параметру рmin и pmax определяют область допустимых решений (ОДР), в пределах которой проводится поиск оптимального решения. В нашем примере в этой области целевая функция имеет два минимума: локальный при рл.опт и глобальный при ргл.опт .
Ф
рл.опт ргл.опт
0 рmin pmax р
ОДР
Рис. 10.17
Задача считается решенной после определения глобального экстремума функции.Методы решения задач оптимизации весьма разнообразны и являются предметом изучения в таких учебных дисциплинах как вычислительная математика, математическое программирование, САПР .
Синтез механизма по заданной функции положения.
Дано: Структурная схема механизма, функция положения выходного звена 3 = П (1) на рабочем перемещении 3 при начальном положении 30 .
Определить: Размеры звеньев механизма, обеспечивающие наилучшее приближение к заданной функции.
Предположим, что синтезируется четырехшарнирный механизм. Тогда необходимо определить размеры всех четырех звеньев механизма и начальное значение обобщенной координаты 10 , т.е. пять неизвестных. Так как решается задача метрического синтеза, а абсолютные размеры звеньев определяются прочностными характеристиками, рабочими нагрузками и материалами, то целесообразно перейти к относительным размерам звеньев, приняв длину одного из них (например, стойки) равной единице. Общее число неизвестных, таким образом, сократится до четырех. Изобразим расчетную схему синтезируемого механизма и заданную функцию положения (рис. 10.18). Выберем на функции положения случайным образом (либо по какой-нибудь стратегии) четыре точки с координатами выходного звена 31 ,32 ,33, 34 . Для каждого из положений можно записать векторное уравнение или два уравнения в проекциях на оси координат (ось абсцисс совпадает с вектором l0 ):
l1 + l2 = l3 + l0 , l1 sin 1 + l2 sin 2 = l3 sin 3 ,
l1 cos 1 + l2 cos 2 = l3 cos 3 + l0 .
3 Узлы интерполяции Функция синтезируемого механизма 34 33 32 3 Заданная функция 31 30 01 1 02 03 10 04 |
Рис. 10.18
В число неизвестных в рассматриваемой задаче входят l1, l2, l3 и 10, l0 считаем заданным, приращения углов i1 определяются по заданной функции положения по выбранным значениям 3i . Для определения четырех неизвестных необходимо задать как минимум четыре точки на заданном участке функции положения. По этим точкам составим систему четырех векторных уравнений
l1 + l2 = l3 + l0 , l1 sin(10+0i) + l2 sin 2i = l3 sin 3i ,
l1 cos (10+0i) + l2 cos 2i = l3 cos 3i + l0 ,
где второе уравнение каждой подсистемы в поекциях позволяет определить угол 2i.
Из этой системы определим размеры звеньев механизма и начальное значение координаты 10. Функция положения синтезированного таким образом механизма будет совпадать с заданной функцией в выбранных точках – узлах интерполяции. Наибольшие отклонения заданной и полученной функций будут находится между узлами интерполяции (рис.10.18). Изменяя положение узлов интерполяции в пределах рабочего перемещения выходного звена можно уменьшать отклонения полученной функции положения от заданной. При использовании метода наименьших квадратов число точек должно быть больше чем число неизвестных (хотя бы на единицу). Полученная функция положения при этом проходит не через узлы интерполяции, а так чтобы отклонения сумма квадратов отклонений в заданных точках была минимальна.
Лекция 11.
Краткое содержание: Введение в теорию высшей пары, основные понятия и определения. Механизмы с высшими кинематическими парами и их классификация. Передачи сцеплением и зацеплением. Основная теорема зацепления. Понятие о полюсе и центроидах. Сопряженные профили в высшей КП. Следствия основной теоремы зацепления. Первое следствие: скорость скольжения профилей в высшей КП. Второе следствие: центр вращения ведущего звена. Угол давления в механизмах с высшими КП. Зубчатые передачи и их классификация. Эвольвентная зубчатая передача. Эвольвента окружности и ее параметрические уравнения. Эвольвентное зацепление и его свойства.
Введение в теорию высшей пары, основные понятия и определения.
Два твердых тела (звена), соприкасающиеся своими поверхностями и имеющие возможность двигаться относительно друг друга, образуют кинематическую пару. Кинематическая пара допускает не любое движение звеньев относительно друг друга, а только такое движение, которое согласуется с характером соприкосновения и с формой соприкасающихся поверхностей.
Если звенья, образующие КП, в силу характера их соприкосновения, могут совершать только простейшие движения относительно друг друга ( вращательное, прямолинейное поступательное или, в общем случае, винтовое ), то пара является низшей. Низшая пара - пара, в которой требуемое относительное движение звеньев обеспечивается соприкасанием ее элементов по поверхности ( фактическое соприкасание звеньев в низшей паре возможно как по поверхности, так и по линиям и точкам ). В таких парах движение одного звена относительно другого представляет собой чистое скольжение, причем может иметь место поверхностный контакт - соприкасание звеньев по плоскости, цилиндрической или винтовой поверхности. Такая поверхность контакта может двигаться, «как бы оставаясь в самой себе».