Лекции ТММ 1 (1172676), страница 24
Текст из файла (страница 24)
Более сложные относительные движения можно реализовать в парах, характер соприкасания звеньев в которых допускает не только относительное скольжение, но и перекатывание. Такие пары называются высшими. Высшая пара - пара, в которой требуемое относительное движение звеньев может быть получено только соприкасанием звеньев по линиям или в точках. В высшей паре поверхностный контакт невозможен, так как он исключает возможность перекатывания тел. Если контакт в высшей КП происходит по линии, то она называется мгновенной контактной линией. Эта линия может быть прямой или кривой, при движении соприкасающихся тел она не только меняет свое положение по отношению к звеньям и к неподвижному пространству, но может менять и свою форму. Двигаясь относительно каждого из соприкасающихся звеньев, эта линия как бы «покрывает», описывает или формирует его поверхность. То есть поверхность каждого из звеньев пары можно рассматривать как геометрическое место мгновенных контактных линий в системе координат, связанной со звеном. В неподвижном пространстве эти линии описывают поверхность зацепления - геометрическое место мгновенных контактных линий в неподвижной системе координат. Очевидно, что мгновенная контактная линия - линия пересечения поверхности зацепления с любой из двух соприкасающихся поверхностей. При точечном контакте, контактная точка в системах координат связанных со звеньями описывает некоторую контактную линию на контактирующей поверхности, в неподвижной системе координат - линию зацепления.
Как следует из вышеизложенного, характер относительного движения звеньев КП и геометрия их контактирующих поверхностей находятся в тесной взаимосвязи. Изучение геометрии контактирующих поверхностей в связи с их относительным движением составляет предмет раздела прикладной механики, который называется теорией зацепления [ 1, 2 ].
Механизмы с высшими кинематическими парами и их классификация.
К механизмам с высшими КП относятся любые механизмы в состав которых входит хотя бы одна высшая пара. Простейший типовой механизм с высшей парой состоит из двух подвижных звеньев, образующих между собой высшую кинематическую пару, а со стойкой низшие ( вращательные или поступательные ) пары. К простейшим механизмам с высшей парой относятся :
-
фрикционные передачи (рис. 11.3),
-
зубчатые передачи (рис. 11.2),
-
кулачковые механизмы (рис. 11.1),
-
поводковые механизмы (в том числе и мальтийские - рис. 11.4).
Структурные схемы простейших механизмов с высшими КП..
1 2
B C
A
0
Рис. 11.2
2
В 3
К
1 С
А
0 Рис. 11.1
1
А В С
2 0
Рис. 11.4
1 2
B C
A
0
Рис. 11.3
Фрикционными механизмами или передачами сцепления называются механизмы с высшей парой в которых передача движения в высшей паре осуществляется за счет сил сцепления или трения в зоне контакта. Кулачковым механизмом называется механизм с высшей парой, ведущее звено которого выполнено в форме замкнутой криволинейной поверхности и называется кулачком (или кулаком). Зубчатыми механизмами называются механизмы звенья которых снабжены зубьями (зубчатый механизм можно определить как многократный кулачковый, рассматривая зацепление каждой пары зубьев, как зацепление двух кулачков) . Рабочие поверхности зубьев должны быть выполнены так, чтобы обеспечивать передачу и преобразование движения по заданному закону за счет их зацепления . Условия, которым должны удовлетворять рабочие поверхности высших пар, формулируются в разделе теории механизмов - теории зацепления или теории высшей пары.
Основы теории высшей кинематической пары.
Основная теорема зацепления.
Понятие о полюсе и центроидах. Рассмотрим два твердых тела i и j , которые совершают друг по отношению к другу плоское движение. Свяжем с телом i систему координат 0ixiyi , а с телом j систему координат 0jxjyj . Плоское движение тела i относительно тела j в рассматриваемый момент эквивалентно вращению вокруг мгновенного центра скоростей или полюса P. Тогда геометрическое место полюсов относительного вращения в системе координат 0ixiyi называется подвижной Цi, а в системе координат 0jxjyj неподвижной Цj центроидой. В процессе рассматриваемого движения цетроиды контактируют друг с другом в полюсах относительного вращения и поэтому перекатываются друг по другу без скольжения, т.е.
yj yi
A i
j 0i VA
B ij
Swi VB
P
Pi
0j xj
Swj Pj Цj Цi xi
Рис. 11.5
VPi = VPj ; VPiPj = 0 ;
тогда дуга Swi равна дуге Swj .
Полюс зацепления - мгновенный центр относительного вращения звеньев, образующих кинематическую пару.
Центроида (полоида) - геометрическое место центров (полюсов) относительного вращения в системах координат, связанных со звеньями.
Передаточное отношение для тел совершающих вращательное движение.
Рассмотрим два тела 1 и 2 , совершающих вращательное движение соответственно вокруг центров 01 и 02 с угловыми скоростями 1 и 2 (рис. 11.6). Причем нам неизвестно связаны эти тела между собой или нет. Как отмечено выше, полюс относительного вращения этих тел будет лежать в такой общей точке этих тел , где вектора скоростей как первого, так и второго тела будут равны. Для скоростей любой точки первого тела VA = 1lA01 , для любой точки второго - VВ = 2lВ02 . Равенство векторов скоростей по направлению для тел, совершающих вращательное движение, возможно только на линии соединяющей центры вращения тел. Поэтому полюс относительного вращения должен лежать на этой линии. Для определения положения полюса на линии центров составим следующее уравнение
1 2
A B
VA VB
1 2
01 P 02
VP1=VP2=VP
1 2
-1 21 V02
VP
01 1 P 21 02
rw1 rw2
aw
VP1 = 1 l01P = 1 rw1,
VP2 = 2 l02P = 2 rw2,
VP1 = VP2 , 1 rw1 = 2 rw2
u12 = 1/2 = (rw2/rw1).
Таким образом, полюс относительного вращения звеньев лежит на линии центров и делит ее на отрезки обратно пропорциональные угловым скоростям.
Теорема Виллиса. Передаточное отношение между звеньями совершающими вращательное движение прямопропорционально отношению угловых скоростей и обратно пропорционально отношению расстояний от центров вращения до полюса.
Знак перед отношением показывает внешним (знак +, зацепление внутреннее) или внутренним (знак - , зацепление внешнее) образом делит полюс линию центров на отрезки rw1 = l 01P и rw2 = l 02P . Данная формула получена из рассмотрения вращательного движения двух тел, при этом тела могут быть и не связаны между собой.
Воспользуемся методом обращенного движения и рассмотрим движение нашей системы относительно звена 1. Для этого к скоростям всех звеньев механизма добавим - 1. Тогда скорости звеньев изменятся следующим образом:
Движение механизма: | Звено 1 | Звено 2 | Звено 0 |
исходное | 1 | 2 | 0 = 0 |
относительно звена 1 | 1 - 1 = 0 | 21 = 2 - 1 | 1 = - 01 |
Скорость любой точки звена 2 в относительном движении будет равно его угловой скорости в этом движении умноженной на расстояние от этой точки до полюса относительного вращения, т. е.
VO2 = 21 l 02P = (2 - 1) rw2 .
Перейдем к рассмотрению двух тел 1 и 2 , совершающих вращательное движение, соответственно вокруг центров 01 и 02 с угловыми скоростями 1 и 2 , и образующих между собой высшую кинематическую пару К (рис. 11.7).
n t 21
D
V02
VK2
n-n K VK1
1
k1 21 2
01 t k2 P 21 02
VK2K1
rw1 rw2
aw
n
Рис. 11.7
Условием существования высшей кинематической пары является условие неразрывности контакта звеньев, которое заключается в том, что проекции скоростей звеньев в точке контакта на контактную нормаль к профилям должны быть равны
_ _
Vпр. n-nK1 = Vпр.n-nK2 или VK2K1 n = 0,
т.е. скалярное произведение вектора относительной скорости в точке контакта на орт нормали равно нулю. Это условие обеспечивается, если скорость относительного движения контактных точек лежит на касательной ( в пространстве в касательной плоскости ). При выполнении этого условия профили не отстают друг от друга ( нарушение контакта приведет к исчезновению пары ), и не внедряются друг в друга
( что при принятом допущении о абсолютно жестких звеньях, невозможно ).
Как было показано выше скорость относительного скольжения в точке контакта равна
VK2K1 = 21 lKP ,
где lKP - расстояние от контактной точки до полюса относительного вращения. Так как VK2K1 перпендикулярна lKP , а VK2K1 должна лежать на касательной, то lKP является нормалью к профилям в точке контакта. То есть контактная нормаль к профилям в высшей паре пересекает линию центров в полюсе относительного вращения.
Основная теорема зацепления.
Формулировка анализа. Контактная нормаль к профилям высшей пары пересекает линию центров в полюсе относительного вращения звеньев ( то что полюс делит линию центров на отрезки обратно пропроциональные угловым скоростям было доказано выше ).
Формулировка синтеза. Профили в высшей кинематической паре должны быть выполнены так, чтобы контактная нормаль к ним проходила через полюс относительного вращения звеньев.
Так как положение полюса на линии центров определяет передаточное отношение механизма, то профили удовлетворяющие основной теореме зацепления обеспечивают заданный закон изменения передаточного отношения или являются сопряженными.
Скорость скольжения в высшей КП