Диссертация (1152564), страница 14
Текст из файла (страница 14)
Это позволяет скорректировать риски проекта. А98также отрицательные результаты распределения не учитываются для расчетаопциона, потому что это означает, что затраты проекта превышают доходы.Формула расчета стоимости реального опциона выглядит так (формула 2.6):0 = 0 [( − − − , 0)](2.6)где St – операционный доход в момент времени T и дисконтируется потребуемой ставке доходности ;Xt – цена исполнения опциона дисконтируется по безрисковой ставке r;C0 – стоимость реального опциона;Е0 – среднее значение.Если > , то опцион не подвержен к риску, и наоборот подвержен, если <.Перед тем, как начать имитационное моделирование, надо дисконтироватьоперационный доход по двум ставкам в момент начала проекта.
Дальше строятсявероятности распределения чистой приведенной стоимости с помощью методаМонте-Карло.В продолжение метода Датара-Мэтьюза М. Коллан представил в 2009 г. методс использованием нечетких множеств, а не теорию вероятности [115, C.7-8]. Данныйметоднечеткихмножествопределяетстоимостьреальныхопционовсиспользованием распределения NРV проекта, которое строится на основе 3-х (вданном случае, треугольное нечеткое число) или 4-х (трапециевидное нечеткоечисло) сценариев денежных потоков.99Формула Коллан выглядит так (формула 2.7):=() ()+()× (+ )(2.7)где С – Стоимость реального опциона;А (Роs) – значение положительной части нечеткого распределения;А (Nеg) – значение отрицательной части нечеткого распределения;Е (А+) – среднее значение в положительной части нечеткого распределения.Таким образом, рассчитывается положительная часть распределения, котораяделится на всю площадь треугольного распределения, а потом умножается среднимзначением положительной части распределения, и в итоге дает нам стоимостьреального опциона.
Данный метод учитывает связь между риском и возможностями,которые стоят перед проектом.Так, построение модели управления риском является одной из главных задачбанка для успешной реализации проекта при его финансировании. Модельуправления риском в рамках данной научно-исследовательской работы, по нашемумнению, теоретически обоснованная совокупность управленческих решений,включающая:▪ анализ чувствительности к риску;▪ обоснование и принятие решений в условиях неопределенности и риска;▪ реализацию мер по снижению риска.По нашему мнению, из всех моделей для оценки реального опциона,указанных выше, самым оптимальным является расчет стоимости по формуле БлэкаШоулза, потому что в основе этой формулы лежит предположение, что изменениестоимости базового актива или в нашем случае инвестиционного проекта имеетлогнормальное распределение, и данная стоимость не зависит от стоимости проекта100в предыдущем периоде.
В таком случае, если мы изначально предположим, чтоизменение стоимости проекта носит вероятностный характер, то можем болееэффективнорегулироватьрискприегонаступлениивходереализацииинвестиционного проекта.Для оценки реального опциона по формуле Блэка-Шоулза необходимыследующие переменные:▪ текущая стоимость денежных потоков от инвестиций – S0;▪ размер инвестиций в проект или цена исполнения опциона – X;▪ время истечения срока или период времени, когда можно принять решениео расширении или приостановлении проекта – T;▪ безрисковая процентная ставка – rf;▪ среднеквадратическое отклонение денежных потоков – .Так, сама формула для колл опциона выглядит таким образом (формула 2.8): = 0 (1 ) − − (2 )где 1 =2 =2ln( 0⁄)+(+ ⁄2) √(2.8),2ln( 0⁄)+(− ⁄2) √А для пут опциона пользуется следующая формула 2.9: = − (−2 ) − 0 (−1 )(2.9)В формуле Блэка Шоулза N(d1) носит вероятностный характер и в качествемодели цены базисного актива реального опциона принимают логарифмическинормальное распределение.
В качестве безрисковой процентной ставки используетсяставка по краткосрочным государственным ценным бумагам.101Для определения риска или дисперсии в данной формуле, может бытьрассчитано среднеквадратическое отклонение доходности акцийинициаторапроекта.
Кроме того, можно брать и отраслевые данные, если акции компании некотируются на рынке.Однако специалисты в этой области, что считают использование даннойформулы затруднено, в связи с применением в расчетах таких параметров, какдисперсия, чистая приведенная стоимость, которые носят оценочный характер [84,C. 97-115]. Но, по нашему мнению, среднеквадратическое отклонение денежныхпотоков, чистая приведенная стоимость, которая рассчитывается для оценкиинвестиционного проекта традиционным методом, и размер инвестиций в проект какраз и являются главными и преимущественными показателями, учитываемыми вмодели, потому что именно они дают модели более точный характер.При анализе перспектив развития инвестиционного проекта ценность опционаприбавляется к стоимости проекта, которая рассчитана ранее традиционнымметодом на основе использования метода чистой приведенной стоимости. Мысчитаем, что как раз это преимущество опциона даст возможность банкузастраховаться от риска при инвестировании в проект с отрицательной приведеннойстоимостью, но с хорошим потенциалом, или же при изменении ситуации на рынке иухудшении показателей проекта.Изменение стоимости проекта с течением времени дает определенныепреимущества, как возможность, например, использования реального опциона наотсрочку.
Если в течение ряда последующих лет приведенная стоимость денежныхпотоков (NРV) увеличивается в связи с изменением стоимости проекта или ставкидисконтирования, то проект, который имел ранее отрицательную NРV, сейчас можетстать привлекательным.Результат традиционного анализа проводится по расчетам чистой приведеннойстоимости проекта, негативная величина которого означает неприбыльность проекта102и проект отклоняется. Но это не означает, что реальный опцион проекта имеетотрицательную стоимость.
Другими словами, проекты, имеющие негативные NРV,могут стать прибыльным в будущем и вероятность такой ситуации является прямымрезультатом изменения показателей направленности денежных потоков от проекта.Поэтому использование реальных опционов дает возможность управлять риском сучетом изменений будущей стоимости и доходности проекта, которые не могут бытьучтены в условиях использования традиционных методов дисконтированияденежных потоков и расчетов экономического эффекта.В настоящее время нет единого мнения по поводу эффективности примененияреальных опционов по сравнению с другими методами финансового менеджмента.Как Д. Рош отмечал, что специалисты, изучающие использование метода реальныхопционов, утверждают, что можно преодолеть недостатки традиционного методадисконтированияктекущейстоимости,применяяпринципопционногоценообразования к нефинансовым активам, в основном когда речь идет осубъективности определения скорректированных на риск ставок дисконтирования[66, C.134-135].
Однако, следует отметить, что цена опционов банка в условияхэффективного рынка должна отражаться на курсе акции. Кроме того, в оценкеопционовнавыборвременинеучитываютсявременныекоммерческиепреимущества из-за неравенства на рынке, приэтом предполагается достоверностьцены исполнения, хотя на практике бывают затруднения для ее определения.103ГЛАВА 3 СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ОЦЕНКИИНВЕСТИЦИОННЫХ ПРОЕКТОВ3.1 Перспективы включения в методику оценки инвестиционных проектовметода реальных опционовПонашемумнению,применениереальногоопционаприоценкеинвестиционного проекта обусловлено необходимостью решить ряд проблем длябанка. Во-первых, при развитии неблагоприятной ситуации на рынке банкунеобходимо приостановить проект или устранить негативные воздействия во времяреализации инвестиционного проекта.
Во-вторых, через определенный период впроцессеосуществленияпроектаможетпоменятьсяспроснапродукты,производимые в результате проекта, тогда банку необходимо развивать проект вдругую сторону от запланированного варианта.В-третьих, банку необходимоменять инвестиционную стратегию для проекта в связи с изменением егофинансовогосостояния.В-четвертых,появляютсяновыевозможностиинвестирования в проект и банку желательно воспользоваться ими.Перед тем, как обосновать метод реальных опционов в качестве эффективногоинструмента риск-менеджмента рассмотрим метод оценки эффективности рискменеджмента в банках.Эффективность банковского риск-менеджмента стал актуальным вопросом запоследние несколько лет в связи с неопределенностью финансового сектора и еготесной взаимосвязью с реальным сектором экономики, где необходимы постоянныеновшества и улучшения в технике.
Как такового понятия «эффективностьбанковского риск-менеджмента» нет. Традиционный показатель эффективности104направлен на общую оценку деятельности банка. Нами предлагается включить втрадиционный показатель такой главный фактор влияния как риск.Взаимосвязи риска и эффективности в банковском секторе исследованынебольшим кругом специалистов. Так, Бергер (1992) и Де.
Юунг (1994), Хюгc иМестер (1993, 1996) исследовали данный вопрос и в некоторых случаях добавлялииндикатор риска в процесс оценки [112, C.245-279; 121, C.27-53; 126, C.1045-1071].Во многих аспектах риск, который измеряется в банке через объемпроблемных ссуд, связан с эффективностью. В настоящей банковской литературенет работы, в которой эффективность рассчитывается c помощью анализа потерь попроблемным ссудам или выявления причин их формирования, хотя некоторыеисследователи рассчитывали эффективность риск-менеджмента банка, уделяявнимание потерям по ссудам в рамках структуры оценки (первые исследованияпровел Берг (1992), используя анализа охвата данных (DEA analysis), а Хюгс (1993) иМестер (1994) использовали параметрические методы).
Однако влияние потерь поссудам учитывается в модели для расчета эффективности как дополнительнаяаналитическая величина. По нашему мнению, данный метод правильно оцениваетэффективность банка с плохим качеством активов и c высоким коэффициентомпотерь по ссудам исключительно из-за плохого риск-менеджмента. А для тех банков,которые правильно оценивают риск, но находятся под влиянием неблагоприятнойэкономической ситуацией, этот метод будет показывать их неэффективность. Как мысчитаем, будет правильным исключать внешние факторы, чтобы правильноучитывать качество риск-менеджмента и рассчитывать его эффективность.Резервы на потери по банковским кредитам образуются по двум основнымпричинам, а именно за счет влияния внутренних и внешних факторов.