Диссертация (1150279), страница 15
Текст из файла (страница 15)
The Role of Salt–Macroion van der WaalsInteractions in the Colloid–Colloid Potential of Mean Force //Curr. Opin. Colloid Interface Sci.-2004.V.9,P.81-86.12.Tavares, F.W., Bratko, D., Blanch, H.W., Prausnitz, J.M. Ion-Specific Effects in the Colloid-Colloid or Protein-Protein Potential of Mean Force: Role of Salt-Macroion van der Waals Interactions//J. Phys. Chem.
B-2004.-V.108,P.9228-9235.13.Boström, M., Tavares, F.W., Bratko, D., Ninham, B.W. Specific Ion Effects in Solutions ofGlobular Proteins: Comparison between Analytical Models and Simulation //J. Phys. Chem. B-2005.V.109,P.24489.14.Boström, M., Williams, D.R.M., Ninham, B.W. Specific Ion Effects: Why the Properties ofLysozyme in Salt Solutions Follow a Hofmeister Series //Biophys.
J.-2003.-V.85,P.686–694.7315.Curtis, R.A., Ulrich, J., Montaser, A., Prausnitz, J.M., Blanch, H.W. Protein-ProteinInteractions in Concentrated Electrolyte Solutions Hofmeister-Series Effects //Biotechnol. Bioeng.2002.-V.79,N.4,P.367-380.16.Boström, M., Ninham, B.W. Energy of an Ion Crossing a Low Dielectric Membrane: the Roleof Dispersion Self-Free Energy //Biophys. J.-2005.-V.114,P.95–101.17.Nagarajan, R., Ruckenstein, E. Theory of Surfactant Self- Assembly: A Predictive MolecularThermodynamic Approach //Langmuir-1991.-V.7,P.2934-2969.18.Goldsipe, A., Blankschtein, D. Molecular-Thermodynamic Theory of Micellization of pH-Sensitive Surfactants //Langmuir-2006.-V.22,P.3547-3559.19.Puvvada, S., Blankschtein, D. Theoretical and Experimental Investigations of MicellarProperties of Aqueous Solutions Containing Binary Mixtures of Nonionic Surfactants //J.
Phys.Chem.-1992.-V.96,N.13,P.5579-5592.20.Shiloach, A., Blankschtein, D. Prediction of Critical Micelle Concentrations and Synergism ofBinary Surfactant Mixtures Containing Zwitterionic Surfactants //Langmuir-1997.-V.13,P.3968-3981.21.Srinivasan, V., Blankschtein, D. Effect of Counterion Binding on Micellar Solution Behavior:1. Molecular-Thermodynamic Theory of Micellization of Ionic Surfactants //Langmuir-2003.V.19,P.9932-9945.22.Srinivasan, V., Blankschtein, D. Effect of Counterion Binding on Micellar Solution Behavior:2. Prediction of Micellar Solution Properties of Ionic Surfactant-Electrolyte Systems //Langmuir2003.-V.19,P.9946-9961.23.Bauer, A., Woelki, S., Kohler, H.-H.
Rod Formation of Ionic Surfactants: Electrostatic andConformational Energies //J. Phys. Chem. B-2004.-V.108,P.2028-2037.24.Moreira, L., Firoozabadi, A. Molecular Thermodynamic Modeling of Specific Ion Effects onMicellization of Ionic Surfactants //Langmuir-2010.-V.26,N.19,P.15177-15191.25.Самойлов, О.Я. Структура водных растворов электролитов и гидратация ионов //Москва,АН СССР, 1957.-184c.26.Vlachy, N., Jagoda-Cwiklik, B., Vácha, R., Touraud, D., Jungwirth, P., Kunz, W. HofmeisterSeries and Specific Interactions of Charged Headgroups with Aqueous Ions //Adv. Colloid InterfaceSci.-2009.-V.146,P.42-47.27.Kunz, W., Lo Nostro, P., Ninham, B.W.
The Present State of Affairs with Hofmeister Effects//Curr. Opin. Colloid Interface Sci.-2004.-V.9,P.1-18.28.Missel, P.J., Mazer, N.A., Carey, M.C., Benedek, G.B. Influence of Alkali- Metal CounterionIdentity on the Sphere-to-Rod Transition in Alkyl Sulfate Micelles //J. Phys. Chem.-1989.V.93,N.26,P.8354-8366.7429.Cuccovia, I.M., Agostinho-Neto, A., Wendel, C.M.A., Chaimovich, H., Romsted, L.S.Determination of Interfacial Co-ion Concentration in Ionic Micelles by Chemical Trapping: HalideConcentration at the Interface of Sodium Dodecyl Sulfate Micelles //Langmuir -1997.-V.13,P.50325035.30.Romsted, L.S.
Do Amphiphile Aggregate Morphologies and Interfacial Compositions DependPrimarily on Interfacial Hydration and Ion-Specific Interactions? The Evidence from ChemicalTrapping //Langmuir-2007.-V.23,P.414-424.31.Geng, Y., Romsted, L.S., Froehner, S., Zanette, D.J., Magid, L.J., Cuccovia, I.M., Chaimovich,H. Origin of the Sphere-to-Rod Transition in Cationic Micelles with Aromatic Counterions: SpecificIon Hydration in the Interfacial Region Matters //Langmuir-2005.-V.21,P.562-568.32.Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., Danino, D. Effect ofHofmeister Anions on Micellization and Micellar Growth of the Surfactant Cetylpyridinium Chloride//J.
Colloid Interface Sci.-2010.-V.342,P.83-92.33.Magid, L.J., Han, Z., Li, Z. Tuning Microstructure of Cationic Micelles on Multiple LengthScales: The Role of Electrostatics and Specific Ion Binding //Langmuir-2000.-V.16,P.149-156.34.Brady, J.E., Evans, D.F., Warr, G.G., Grieser, F., Ninham, B.W. Counterion Specificity as theDeterminant of Surfactant Aggregation //J. Phys. Chem.-1986.-V.90,N.9,P.1853-1859.35.Bostrom, M., Williams, D.R.M., Ninham, B.W. Specific Ion Effects: The Role of Co-Ions inBiology //Europhys.
Lett.-2003.-V.63,N.4,P.610-615.36.Ivanov, I.B., Slavchov, R.I., Basheva, E.S., Sidzhakova, D., Karakashev, S.I. Hofmeister Effecton Micellization, Thin Films and Emulsion Stability //Adv. Colloid Interface Sci. -2011.-V.168(Suppl.),P.93-104.37.Oelschlaeger, C., Suwita, P., Willenbacher, N. Effect of Counterion Binding Efficiency onStructure and Dynamics of Wormlike Micelles //Langmuir-2010.-V.26,N.10,P.7045-7053.38.Kuperkar, K., Abezgauz, L., Prasad, K., Bahadur, P. Formation and Growth of Micelles inDilute Aqueous CTAB Solutions in the Presence of NaNO 3 and NaClO 3 //Journal of Surfactants andDetergents-2010.-V.13,P.293-303.39.Okuda, H., Ozeki, S., Ikeda, S.
Adsorption of Ions on Aqueous Surfaces of NaBr Solutions ofDodecyldimethylammonium Chloride //J. Colloid Interface Sci.-1987.-V.115,N.1,P.155-166.40.Ozeki, S., Ikeda, S. The Difference In Solubilization Power between Spherical and RodllkeMicelles of Dodecyldimethylammonlum Chloride in Aqueous Solutions //J. Phys. Chem.-1985.V.89,P.5088-5093.41.Fujio, K., Mitsui, T., Kurumizawa, H., Tanaka, Y., Uzu, Y. Solubilization of a Water-InsolubleDye in Aqueous NaBr Solutions of Alkylpyridinium Bromides and Its Relation to Micellar Size andShape //Colloid Polym.
Sci.-2004.-V.282,P.223-229.7542.Ozeki,S.,Ikeda,S.TheViscosityBehaviorof Aqueous NaCl Solutions ofDodecyldimethylammonium Chloride and the Flexibility of Its Rod- Like Micelle //J. Colloid InterfaceSci.-1980.-V.77,N.1,P.219-231.43.Ozeki, S., Ikeda, S. The Sphere-Rod Transition of Micelles of DodecyldimethylammoniumBromide in Aqueous NaBr Solutions, and the Effects of Counterion Binding on the Micelle Size,Shape and Structure //Colloid Polym. Sci.-1984.-V.262,P.409-417.44.Ikeda, S., Fujio, K. The Salt-Induced Sphere-Rod Transition of Micelles of DodecylpyridiniumIodide in Aqueous NaI Solutions //Colloid Polym.
Sci.-1992.-V.270,P.1009-1017.45.Ikeda, S. Sphere-Rod Transition of Surfactant Micelles and Size Distribution of RodlikeMicelles //J. Phys. Chem.-1984.-V.88,P.2144-2149.46.Ikeda, S., Hayashi, S., Imae, T. Rodlike Micelles of Sodium Dodecyl Sulfate in ConcentratedSodium Halide Solutions //J. Phys.
Chem.-1981.-V.85,P.106-112.47.Israelachvili, J.N. Intermolecular and Surface Forces //3rd ed.-Elsevier Inc., 2011.-674p.48.Crose, V., Cosgrove, T., Maitland, G., Hughes, T., Karlsson, G. Rheology, CryogenicTransmission Electron Spectroscopy, and Small-Angle Neutron Scattering of Highly ViscoelasticWormlike Micellar Solutions //Langmuir-2003.-V.19,P.8536-8541.49.Raghavan, S.R., Edlund, H., Kaler, E.W. Cloud-Point Phenomena in Wormlike MicellarSystems Containing Cationic Surfactant and Salt //Langmuir-2002.-V.18,P.1056-1064.50.Israelachvili, J.N., Mitchell, D.J., Ninham, B.W.
Theory of Self- Assembly of HydrocarbonAmphiphiles into Micelles and Bilayers //Faraday Transactions-1976.-.51.Verbruggen, E.M.J., Hermens, J.L.M., Tolls, J. Physicochemical Properties of HigherNonaromatic Hydrocarbons: A Literature Study //J. Phys. Chem. Ref. Data-2000.-V.9,N.6,P.14351446.52.Tolls, J., van Dijk, J., Verbruggen, E.J.M., Hermens, J.L.M., Loeprecht, B., Schuurmann, G .Aqueous Solubility-Molecular Size Relationships: A Mechanistic Case Study Using C10- to C19Alkanes //J. Phys.
Chem. A-2002.-V.106,P.2760–2765.53.Plyasunov, A.V., Shock, E.L. Thermodynamic Functions of Hydration of Hydrocarbons at298.15 K and 0.1 MPa //Geochimica Cosmochimica Acta-2000.-V.64,P.439–468.54.Ferguson, A.L., Debenedetti, P.G., Panagiotopoulos, A.Z. Solubility and MolecularConformations of n-Alkane Chains in Water //J. Phys. Chem.-2009.-V.113,P.6405-6414.55.McAuliffe, C. Solubility in Water of C1 -C9 Hydrocarbons //Nature-1963.-V.200,P.1092-1093.56.Franks, F. Solute-Water Interactions and the Solubility Behavior of Long-Chain ParaffinHydrocarbons //Nature-1966.-V.210,P.87-88.57.Tanford, C. The Hydrophobic Effect //New York, Wiley, 1973.-233p.7658.Xie, W.H., Shiu, W.Y., Mackay, D. A Review of the Effect of Salts on the Solubility ofOrganic Compounds in Seawater //Marine Environmental Research-1997.-V.44,N.4,P.429-444.59.Ni, N., Yalkowsky, S.H.
Prediction of Setschenow constants //Int. J. Pharm.-2003.-V.254,P.167–172.60.Baldwin, R.L. How Hofmeister Ion Interactions Affect Protein Stability //Biophys. J.-1996.-V.71,P.2056.61.Morrison, T.J. The Salting-out of Non-electrolytes. Part I. The Effect of Ionic Size, IonicCharge, and Temperature //J. Chem. Soc.-1952.-P.3814-3818.62.Morrison, T.J., Billet, F. The Salting-out of Non-electrolytes. Part II. The Effect of Variation inNon-Electrolyte //J. Chem.
Soc.-1952.-P.3819-3822.63.Long, F.A., McDevit, W.F. Activity Coefficients of Nonelectrolyte Solutes in Aqueous SaltSolutions //Chem. Rev.-1951.-P.119-169.64.Mukerjee, P., Chan, C.C. Effects of High Salt Concentrations on the Micellization of OctylGlucoside: Salting-Out of Monomers and Electrolyte Effects on the Micelle-Water Interfacial Tension//Langmuir-2002.-V.18,P.5375-5381.65.Franchini, M.K., Carstensen, J.T. Confirmation of the Mukerjee Term in an Extended Corrin-Harkins Relation Using an Anionic Amphiphilic Drug //J. Pharm. Sci.-1996.-V.85,N.2,P.220-227.66.Semenov, A.N. Contribution to the Theory of Microphase Layering in Block-Copolymer Melts//J.