Диссертация (1150279), страница 16
Текст из файла (страница 16)
Exp. Theor. Phys.-1985.-V.61,N.4,P.733-742.67.Onsager, L., Samaras, N.N.T. The Surface Tension of Debye-Huckel Electrolytes //J. Chem.Phys.-1934.-V.2,P.528-536.68.Manciu, M., Ruckenstein, E. Specific Ion Effects via Ion Hydration: I.Surface Tension //Adv.Colloid Interface Sci.-2003.-V.105,P.63-101.69.Ninham, B.W., Yaminsky, V. Ion Binding and Ion Specificity: The Hofmeister Effect andOnsager and Lifshitz Theories //Langmuir-1997.-V.13,N.7,P.2097-2108.70.Davies, B., Ninham, B.W.
Van der Waals Forces in Electrolytes //J. Chem. Phys.-1972.-V.56,N.12,P.5797-5801.71.Netz, R.R. Static van der Waals Interactions in Electrolytes //Eur. Phys. J. E-2001.-V.5,P.189-205.72.Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids //Zh. Eksp. Teor. Fiz.(JETP)-1955.-V.29,P.94.73.Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P. The General Theory of van der WaalsForces //Adv.
Phys.-1961.-V.10:38,P.165-209.74.Derjaguin, B.V., Dzyaloshinsky, N.E., Koptelova, M.M., Pitayevsky, L.P. Molecular-SurfaceForces in Binary Solutions //Discuss. Faraday Soc.-1965.-V.40,P.246-252.7775.Куни, Ф.М., Русанов, А.И. Микроскопическая теория дисперсионных взаимодействий вкапиллярных системах. In В книге: Русанов, А. И., Гудрич, Ф. Ч. Современная теориякапиллярности.
К 100-летию теории капиллярности Гиббса //Ленинград: Химия, 1980, c.162213.76.McLachlan, A.D. Retarded Dispersion Forces in Dielectrics at Finite Temperatures //Proc. Roy.Soc. Lond. A-1963.-V.274,P.80-90.77.Davies, B. Lifshitz Theory — Exact or Approximate Statistical Mechanics? //Phys. Lett.-1974.-V.48,N.4,P.298-300.78.Renne, M.J., Nijboer, B.R.A.
Van der Waals Interaction between Two Spherical DielectricParticles //Chem. Phys. Lett.-1970.-V.6,N.6,P.601-604.79.Langbein, D. Retarded Dispersion Energy between Macroscopic Bodies //Phys. Rev. B-1970.-V.2,N.8,P.3371-3383.80.Marvin, A.M., Toigo, F. Van der Waals Interaction between a Point Particle and a MetallicSurface. I. Theory. //Phys. Rev.
A-1982.-V.25,N.2,P.782-802.81.Nabutovskii, V.M., Belosludov, V.R., Korotkikh, A.M. Interaction Potential between SmallNeutral Particles and Spherical or Cylindrical Surfaces //J. Exp. Theor. Phys.-1979.-V.50,N.2,P.352355.82.Parsegian, V.A. Long-Range Physical Forces in the Biological Milieu //Ann. Rev. Biophys.Bioeng.-1973.-V.2,P.221-255.83.Schmeits, M., Lucas, A.A.
Physical Adsorption on Small Spherical Particles and SphericalPores //J. Chem. Phys.-1976.-V.65,P.2901-2906.84.McLachlan, A.D. Effect of the Medium on Dispersion Forces in Liquids //Discuss. FaradaySoc.-1965.-V.40,P.239-245.85.Renne, M.J. Microscopic Theory of Retarded Van der Waals Forces between MacroscopicDielectric Bodies //Physica-1971.-V.56,P.125-137.86.McLachlan, A.D.
Three-Body Dispersion Forces //Mol. Phys.-1963.-V.6,N.4,P.423-427.87.Nijboer, B.R.A. On the Many-Body Van der Waals Binding Energy of a Dense Fluid //Physica-1975.-V.79A,P.420-432.88.Renne, M.J., Nijboer, B.R.A. Comment on ‗Effective van der Waals Interaction between RareGas Atoms in a Dense Classical Fluid‘ //J. Phys. C-1973.-V.6,P.L10-L12.89.Jungwirth, P., Winter, B. Ions at Aqueous Interfaces: From Water Surface to Hydrated Proteins//Annu. Rev. Phys. Chem.-2008.-V.59,P.343–366.90.Petersen, P.B., Saykally, R.J. Evidence for an Enhanced Hydronium Concentration at theLiquid Water Surface //J.
Phys. Chem. B-2005.-V.109,P.7976–7980.7891.Jungwirth, P., Tobias, D.J. Molecular Structure of Salt Solutions: A New View of the Interfacewith Implications for Heterogeneous Atmospheric Chemistry //J. Phys. Chem.B-2001.-V.105,P.10468-10472.92.Manciu, M., Ruckenstein, E. On the Interactions of Ions with the Air/Water Interface//Langmuir-2005.-V.21,N.24,P.11312–11319.93.Jungwirth, P., Tobias, D.J.
Specific Ion Effects at the Air/Water Interface //Chem. Rev.-2006.-V.106,P.1259-1281.94.Lima, E.R.A., Horinek, D., Netz, R.R., Biscaia, E.C., Tavares, F.W., Kunz, W., Boström, M.Specific Ion Adsorption and Surface Forces in Colloid Science //J. Phys. Chem. B-2008.V.112,P.1580-1585.95.dos Santos, A.P., Diehl, A., Levin, Y. Surface Tensions, Surface Potentials, and the HofmeisterSeries of Electrolyte Solutions //Langmuir-2010.-V.26,N.13,P.10778–10783.96.Parsons, D.F., Boström, M., Maceina, T.J., Salis, A., Ninham, B.W. Why Direct or ReversedHofmeister Series? Interplay of Hydration, Non-Electrostatic Potentials, and Ion Size //Langmuir2010.-V.26,N.5,P.3323–3328.97.Boström, M., Williams, D.R.M., Ninham, B.W. Specific Ion Effects: Why DLVO Theory Failsfor Biology and Colloid Systems //Phys. Rev.
Lett. -2001.-V.87,P.168103-168111.98.Boström, M., Williams, D.R.M., Ninham, B.W. Ion Specificity of Micelles Explained by IonicDispersion Forces //Langmuir-2002.-V.18,P.6010-6014.99.Lukanov, B., Firoozabadi, A. Specific Ion Effects on the Self- Assembly of Ionic Surfactants: AMolecular Thermodynamic Theory of Micellization with Dispersion Forces //Langmuir-2014.V.30,P.6373−6383.100.Koroleva, S.V., Victorov, A.I.
Modeling of the Effects of Ion Specificity on the Onset andGrowth of Ionic Micelles in a Solution of Simple Salts //Langmuir-2014.-V.30,P.3387-3396.101.Koroleva, S.V., Victorov, A.I. The Strong Specific Effect of Coions on Micellar Growth fromMolecular-Thermodynamic Theory //Phys. Chem. Chem. Phys.-2014.-V.16,P.17422-17425.102.Skjold-Jørgensen, S. Gas Solubility Calculations. II. Application of a New Group-ContributionEquation of State //Fluid Phase Equilib.-1984.-V.16,P.317-351.103.Lue, L., Zoeller, N., Blankschtein, D. Incorporation of Nonelectrostatic Interactions in thePoisson-Boltzmann Equation //Langmuir-1999.-V.15,P.3726-3730.104.Andreev, V.A., Victorov, A.I.
Molecular Thermodynamics for Micellar Branching in Solutionsof Ionic Surfactants //Langmuir-2006.-V.22,P.8298-8310.105.Русанов, А.И. Мицеллообразование в растворах поверхностно-активных веществ//Санкт-Петербург, Химия, 1992.-280с.79106.May, S., Ben-Shaul, A. Ch. 2 Molecular Packing in Cylindrical Micelles. In Zana, R., Kaler, E.W. Giant Micelles. Properties and Applications. //CRC Press: Taylor & Francis Group, 2007.107.Stigter, D. Micelle Formation by Ionic Surfactants. II. Specificity of Head Groups, MicelleStructure //J. Phys.
Chem.-1974.-V.78,N.24,P.2480-2485.108.Srinivasan, V., Blankschtein, D. Prediction of Conformational Characteristics and MicellarSolution Properties of Fluorocarbon Surfactants //Langmuir-2005.-V.21,N.4,P.1647-1660.109.Magid, L.J. The Surfactant-Polyelectrolyte Analogy //J. Phys. Chem.
B-1998.-V.102,P.4064-4074.110.Anacker, E.W., Ghose, H.M. Counterions and Micelle Size. II. Light Scattering by Solutions ofCetylpyridinium Salts //J. Am. Chem. Soc.-1968.-V.90,N.12,P.3161-3166.111.Goddard, E.D., Harva, O., Jones, T.G. The Effect of Univalent Cations on the Critical MicelleConcentration of Sodium Dodecyl Sulphate //Trans. Faraday Soc.-1953.-V.49,P.980-984.112.Mukerjee, P., Ray, A. The Specificity of Counterion Adsorption to Micelles ofDodecylpyridinium Iodide and Their Critical Concentrations //J. Phys. Chem.-1966.-V.70,N.7,P.21502157.113.Jones, M.N., Piercy, J. Light Scattering Studies on n-Dodecyltrimethylammonium Bromide andn-Dodecylpyridinium Iodide //J. Chem. Soc., Faraday Trans. 1-1972.-V.68,P.1839-1848.114.Fujio, K., Maruyama, Y., Uzu, Y.
Degree of Counterion Binding of Alkylpyridinium HalideMicelles: Its Relation to Micelle Shape and Size //J. Oleo Sci.-2005.-V.54,N.7,P.375-382.115.Gonzalez-Perez, A., Varela, L.M., Garcia, M., Rodriguez, J.R. Sphere-to-Rod Transitions inHomologous Alkylpyridinium Salts: A Stauff-Klevens-Type Equation for the Second Critical MicelleConcentration //J.
Colloid Interface Sci.-2006.-V.293,P.213–221.116.Lee, H.S., Arunagirinathan, M.A., Vagias, A., Lee, S., Bellare, J.R., Davis, H.T., Kaler, E.W.,McCormick, A.V., Bates, F.S. Almost Fooled Again – New Insights into CsDS Micelle Structures//Langmuir-2014.-V.30,N.43,P.12743–12747.117.Mukerjee, P., Ray, A. Charge- Transfer Interactions and the Polarity at the Surface of Micellesof Long-chain Pyridinium Iodides //J. Phys. Chem.-1966.-V.70,N.7,P.2144-2149.118.Harada, M., Satou, H., Okada, T. Hydration Structures of Bromides on Cationic Micelles //J.Phys. Chem.