Диссертация (1145368), страница 10
Текст из файла (страница 10)
Âîçüìåì μ = M = 1 (òîãäà íåëèíåéíîñòü (1.90) ëåæèòâ ñåêòîðå óñòîé÷èâîñòè),ε1 = 0.1, ε2 = 0.2, ..., ε10 = 1è áóäåì äëÿ j = 1, ..., 10 ïîñëåäîâàòåëüíî ñòðîèòü ðåøåíèÿ ñèñòåìû (1.93),ïîëàãàÿ íåëèíåéíîñòü ϕ(σ) ðàâíîé ϕj (σ) ñîãëàñíî (1.90).Çäåñü äëÿ âñåõj = 1, ..., 10 áóäóò ñóùåñòâîâàòü ïåðèîäè÷åñêèå ðåøåíèÿ.Íà÷àëüíûå äàííûå ïåðèîäè÷åñêîãî ðåøåíèÿ íà ïåðâîì øàãå ïðè j = 0ñîãëàñíî (1.91) èìåþò âèäx1 (0) = x3 (0) = x4 (0) = 0, x2 (0) = −1.7513.Âû÷èñëèì ñ óêàçàííûìè íà÷àëüíûìè äàííûìè òðàåêòîðèþ x1 (t) íà áîëüøîìâðåìåííîì ïðîìåæóòêå.Êîíå÷íàÿ òî÷êà òðàåêòîðèè x1 (T ) áåðåòñÿ êàêíà÷àëüíûå äàííûå äëÿ âû÷èñëåíèÿ ïåðèîäè÷åñêîãî ðåøåíèÿ ïðè j = 2.Ïðîåêöèÿ òðàåêòîðèè ðåøåíèÿ íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìû σ(t) =x1 (t) − 10.1x3 (t) − 0.1x4 (t) ïðè j = 1 èçîáðàæåíû íà Ðèñ. 1.22.Çäåñü âèäíî, ÷òî ïîñëå ïåðåõîäíîãî ïðîöåññà ïðîèñõîäèò âûõîä íàïåðèîäè÷åñêîå ðåøåíèå.3 äëÿïðîâåäåíèÿ âû÷èñëåíèé òðàåêòîðèé èñïîëüçîâàëèñü ñòàíäàðòíûå ñðåäñòâà ïàêåòà Matlab71ε = 0.1200.1530150.1105000.051 ( σ )10σx220−5−100−0.05−10−20−0.1−15−30−30−20−100x102030−20020406080100−0.15−0.15−0.1−0.05t10σ0.050.10.15Ðèñóíîê 1.22: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε1 = 0.1; ãðàôèê ϕ1 (σ)Ïðîäîëæàÿ ýòó ïðîöåäóðó ïðè j = 2, ...10, ïîñëåäîâàòåëüíî âû÷èñëÿåì(Ðèñ.
1.23-1.30) ïåðèîäè÷åñêèå ðåøåíèå ñèñòåìû (1.93).Ïðè ε10 = 1 ýòîïåðèîäè÷åñêîå ðåøåíèå èçîáðàæåíî íà (Ðèñ. 1.31).ε = 0.2200.330150.2105000.12( σ )10σx220−5−100−0.1−10−20−0.2−15−30−30−20−100x1102030−20020406080100−0.3−0.3t−0.2−0.10σ0.10.20.3Ðèñóíîê 1.23: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε2 = 0.2; ãðàôèê ϕ2 (σ).Îòìåòèì, ÷òî, åñëè âìåñòî ïîñëåäîâàòåëüíîãî óâåëè÷åíèÿ εj âû÷èñëÿòüðåøåíèå ñ íà÷àëüíûìè äàííûìè (1.92) ïðè ε = 1, òî ýòî ðåøåíèå ñîðâåòñÿê íóëþ.Çàìåòèì, ÷òî ïðè εj = 1 íåëèíåéíîñòü ϕj (σ) ÿâëÿåòñÿ íåóáûâàþùåé.
Âýòîì ñëó÷àå äëÿ ïîñòðîåíèÿ êîíòðïðèìåðà ê ïðîáëåìå Êàëìàíà ðåàëèçóåìñëåäóþùèé àëãîðèòì [65, 175] äëÿ ïîñëåäîâàòåëüíîñòè íåëèíåéíîñòåéθi (σ) = ϕ10 (σ) + (tanh(σ) − ϕ10 (σ))i,m72ε = 0.3200.430150.3105000.20.1 3( σ )10σx220−5−10−0.1−0.2−10−200−0.3−15−30−0.4−30−20−100x102030−20020406080100−0.4−0.2t10σ0.20.4Ðèñóíîê 1.24: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε3 = 0.3; ãðàôèê ϕ3 (σ).ε = 0.4200.630150.4105000.2 4( σ )10σx220−5−100−0.2−10−20−0.4−15−30−30−20−100x1102030−20020406080100−0.6−0.6−0.4−0.2t0σ0.20.40.6Ðèñóíîê 1.25: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε4 = 0.4; ãðàôèê ϕ4 (σ).ε = 0.520300.6150.41050.200−10−205( σ )10σx220−5−0.2−10−0.4−15−0.6−30−30−20−100x11020300−200204060t80100−0.6 −0.4 −0.20σ0.20.40.6Ðèñóíîê 1.26: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε5 = 0.5; ãðàôèê ϕ5 (σ).73ε = 0.6200.8301520100.4500.26( σ )σx20.6100−5−10−0.2−0.4−10−200−0.6−15−30−0.8−30−20−100x102030−20020406080100−0.5t10σ0.5Ðèñóíîê 1.27: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε6 = 0.6; ãðàôèê ϕ6 (σ).ε = 0.72013015105000.57( σ )10σx2200−5−10−0.5−10−20−15−30−30−20−100x102030−20020406080−1−1100−0.5t10σ0.51Ðèñóíîê 1.28: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1, x2) è âûõîä ñèñòåìûïðè ε7 = 0.7; ãðàôèê ϕ7(σ).ε = 0.82030115105000.5 8( σ )10σx220−5−10−0.5−10−20−15−1−30−30−20−100x1102030−2000204060t80100−1−0.50σ0.51Ðèñóíîê 1.29: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1, x2) è âûõîä ñèñòåìûïðè ε8 = 0.8; ãðàôèê ϕ8(σ).74ε = 0.92030151105009( σ )0.510σx220−100−0.5−10−20−1−15−30−30−20−100x102030−20020406080100−1−0.5t10σ0.51Ðèñóíîê 1.30: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε9 = 0.9; ãðàôèê ϕ9 (σ).ε=1201.53015200.5010( σ )5σ210x1100−5−100−0.5−10−20−1−15−30−30−20−100x102030−20020406080100−1−0.5t10σ0.511.5Ðèñóíîê 1.31: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè ε10 = 1; ãðàôèê sat(σ) = ϕ10 (σ).ãäå i = 1, ..., 10, m = 10,tanh(σ) =0<eσ − e−σ,eσ + e−σdtanh(σ) ≤ 1 ∀σ.dσÑòàðòóÿ ïðè i = 1 èç òî÷êè x10 (T ), íàõîäèì ïåðèîäè÷åñêîå ðåøåíèå èïðîäîëæàåì ïðîöåäóðó íàõîæäåíèÿ ïåðèîäè÷åñêèõ ðåøåíèé ïðè i = 2, ..., 10.Ðåçóëüòàò ðàáîòû äàííîãî àëãîðèòìà èçîáðàæåí íà Ðèñ.
1.32-1.34.75201.53015110000.5θ1 (σ5σ10(x220−5−100−0.5−10−20−1−15−30−30−20−100x1102030−20020406080−1.5−2100−1t0σ12Ðèñóíîê 1.32: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè i = 1; ãðàôèê íåëèíåéíîñòè θ1 (σ).1.5203015110000.5θ5(σ5σ10(x220−5−100−0.5−10−20−1−15−30−30−20−100x1102030−20020406080−1.5−2100−1t0σ12Ðèñóíîê 1.33: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè i = 5; ãðàôèê íåëèíåéíîñòè θ5 (σ).201.53015110000.5θ10 (σ5σ10(x220−5−100−0.5−10−20−1−15−30−30−20−100x1102030−20020406080t100−1.5−2−10σ12Ðèñóíîê 1.34: Ïðîåêöèÿ òðàåêòîðèè íà ïëîñêîñòü (x1 , x2 ) è âûõîä ñèñòåìûïðè i = 10; ãðàôèê íåëèíåéíîñòè tanh(σ) = θ10 (σ).Òàêèì îáðàçîì, ìû ïîëó÷èëè ïåðèîäè÷åñêîå ðåøåíèå äëÿ ñèñòåìû ñ ãëàäêîéìîíîòîííî-âîçðàñòàþùåé íåëèíåéíîñòüþθ10 (σ) = tanh(σ),76óäîâëåòâîðÿþùåé óñëîâèþ Êàëìàíà.77Ãëàâà 2.
Ëÿïóíîâñêàÿ ðàçìåðíîñòüàòòðàêòîðîâÊîíöåïöèÿ ëÿïóíîâñêîé ðàçìåðíîñòè áûëà ïðåäëîæåíà â ðàáîòå Êàïëàíà èÉîðêà [148] (Kaplan and Yorke) è çàòåì ðàçâèâàëàñü â ðàçëè÷íûõ ðàáîòàõ (ñì.,íàïðèìåð, [81, 100, 141, 172, 210, 281] è äðóãèå).Êîíöåïöèÿ ëÿïóíîâñêîé ðàçìåðíîñòè áûëà ïðåäëîæåíà Êàïëàíà è Éîðêå(Kaplan and Yorke) â 1979 ãîäó [148] è çàòåì ðàçâèâàëàñü è îáîñíîâûâàëàñüìíîãèìè ó÷åíûìè è çàòåì ðàçâèâàëàñü â ðàçëè÷íûõ ðàáîòàõ (ñì., íàïðèìåð,[81, 100, 141, 172, 210, 281] è äðóãèå). äàííîé ðàáîòå âñå ñîîòâåòñòâóþùèåïîíÿòèÿ è èõ íåîáõîäèìûå ñâîéñòâà ïîëó÷àþòñÿ, èñõîäÿ èç ðåçóëüòàòîâ Douadyè Oesterle [92] îá îöåíêå ñâåðõó õàóñäîðôîâîé ðàçìåðíîñòè ÷åðåç ëÿïóíîâñêóþðàçìåðíîñòü îòîáðàæåíèé.Ëÿïóíîâñêàÿ ðàçìåðíîñòü ìîæåò èñïîëüçîâàòüñÿ êàê îöåíêà ñâåðõóòîïîëîãè÷åñêîé, õàóñäîðôîâîé è ôðàêòàëüíîé ðàçìåðíîñòåé.Äëÿ âû÷èñëåíèÿ ëÿïóíîâñêîé ðàçìåðíîñòè èñïîëüçîâàëèñü êàê ÷èñëåííûåìåòîäû (ñì., íàïðèìåð, â [170, 188] MATLAB ðåàëèçàöèþ ìåòîäîâ, îñíîâàííûõíà QR è SVD äåêîìïîçèöèè), òàê è ýôôåêòèâíûé àíàëèòè÷åñêèé ïîäõîä,ïðåäëîæåííûé Ã.À.
Ëåîíîâûì â 1991 [198] (ñì. òàêæå [63, 173, 184, 188, 201203]). Ìåòîä Ëåîíîâà îñíîâàí íà ïðÿìîì ìåòîäå Ëÿïóíîâà è ðàññìîòðåíèèñïåöèàëüíîãî êëàññà ôóíêöèé Ëÿïóíîâà.Ïðåèìóùåñòâî ýòîãî ìåòîäàçàêëþ÷àåòñÿ â òîì, ÷òî îí íå òðåáóåò ëîêàëèçàöèè àòòðàêòîðà â ôàçîâîìïðîñòðàíñòâå, ÷òî îñîáåííî âàæíî ïðè íàëè÷èè â ñèñòåìå ñêðûòûõ àòòðàêòîðîâ.Âäàííîéäîêàçàòåëüñòâîðàáîòåïðîâåäåíîèíâàðèàíòíîñòèäèôôåîìîðôèçìîâ[162, 174]îáîñíîâàíèåëÿïóíîâñêîéèïîëó÷åíîìåòîäàËåîíîâàðàçìåðíîñòèîáîáùåíèåîòíîñèòåëüíîìåòîäàíà äèíàìè÷åñêèå ñèñòåìû ñ äèñêðåòíûì âðåìåíåì [161].÷åðåçËåîíîâàÏðèìåíåíèåðàçðàáàòûâàåìûõ â ðàáîòå ïîäõîäîâ è ìåòîäà Ëåîíîâà ïîçâîëÿåò äîêàçàòü78ãèïîòåçó Eden [97, ñ.98, Question 1] î äîñòèæåíèè ìàêñèìóìà ëÿïóíîâñêîéðàçìåðíîñòè â ñòàöèîíàðíûõ òî÷êàõ è ïîëó÷èòü òî÷íîþ ôîðìóëó ðàçìåðíîñòèàòòðàêòîðîâ äëÿ ðÿäà èçâåñòíûõ ñèñòåì [173, 174, 184, 189, 194, 195, 221, 222].2.1 Ëÿïóíîâñêàÿ ðàçìåðíîñòü îòîáðàæåíèé èäèíàìè÷åñêèõ ñèñòåìÐàññìîòðèì àâòîíîìíóþ ñèñòåìó äèôôåðåíöèàëüíûõ óðàâíåíèéu̇ = f (u),f : U ⊆ Rn → Rn ,(2.1)ãäå f íåïðåðûâíî-äèôôåðåíöèðóåìàÿ âåêòîð-ôóíêöèÿ.
Áóäåì ïðåäïîëàãàòü,÷òî ëþáîå ðåøåíèå u(t, u0 ) ñèñòåìû (2.1) ñ u(0, u0 ) = u0 ∈ U ñóùåñòâóåòäëÿ t ∈ [0, ∞), åäèíñòâåííî è îñòàåòñÿ â U . Òîãäà îïåðàòîð ñäâèãà ϕt (u0 ) =u(t, u0 ) ÿâëÿåòñÿ íåïðåðûâíî-äèôôåðåíöèðóåìûì è óäîâëåòâîðÿåò ñëåäóþùåìóñâîéñòâó:ϕt+s (u0 ) = ϕt (ϕs (u0 )), ϕ0 (u0 ) = u0 ∀ t, s ≥ 0, ∀u0 ∈ U.(2.2)Òàêèì îáðàçîì {ϕt }t≥0 çàäàåò ãëàäêóþ äèíàìè÷åñêóþ ñèñòåìó â ôàçîâîìïðîñòðàíñòâå (U, || · ||):Çäåñü ||u|| =Rn .{ϕ }t≥0 , (U ⊆ R , || · ||) (ñì., íàïðèìåð, [63]).tnu21 + · · · + u2n åâêëèäîâà íîðìà âåêòîðà u = (u1 , . .
. , un ) ∈Àíàëîãè÷íî ìîæíî ðàññìîòðåòü äèíàìè÷åñêóþ ñèñòåìó, ïîðîæäåííóþñèñòåìîé àâòîíîìíûõ óðàâíåíèé ñ äèñêðåòíûì âðåìåíåìu(t + 1) = ϕ(u(t)),t = 0, 1, .. ,(2.3)ãäå ϕ : U ⊆ Rn → U íåïðåðûâíî-äèôôåðåíöèðóåìàÿ âåêòîð-ôóíêöèÿ. Çäåñüϕt (u) = (ϕ ◦ ϕ ◦ · · · ϕ)(u),t−timesϕ0 (u) = u,è ñóùåñòâîâàíèå è åäèíñòâåííîñòü (â ïðÿìîì âðåìåíè) âûïîëíåíî äëÿ âñåõ t ≥0. Äàëåå {ϕt }t≥0 îáîçíà÷àåò ãëàäêóþ äèíàìè÷åñêóþ ñèñòåìó ñ íåïðåðûâíûìèëè äèñêðåòíûì âðåìåíåì.79Ðàññìîòðèì ëèíåàðèçàöèè ñèñòåì (2.1) è (2.3) âäîëü ðåøåíèÿ ϕt (u):ẏ = J(ϕt (u))y,J(u) = Df (u),y(t + 1) = J(ϕt (u))y(t),J(u) = Dϕ(u),(2.4)(2.5)ãäå J(u) n × n ìàòðèöà ßêîáè, ýëåìåíòû êîòîðîé íåïðåðûâíûå ôóíêöèè u.Äàëåå ïðåäïîëàãàåì det J(u) = 0 ∀u ∈ U .Ðàññìîòðèì ôóíäàìåíòàëüíóþ ìàòðèöó, êîòîðàÿ ñîñòîèò èç ëèíåéíîíåçàâèñèìûõ ðåøåíèé {y i (t)}ni=1 ëèíåàðèçîâàííîé ñèñòåìûDϕt (u) = y 1 (t), ..., y n (t) ,Dϕ0 (u) = I,(2.6)ãäå I åäèíè÷íàÿ n×n ìàòðèöà.
Õîðîøî èçâåñòíî ñëåäóþùåå âàæíîå ñâîéñòâîôóíäàìåíòàëüíîé ìàòðèöû (2.6):Dϕt+s (u) = Dϕt ϕs (u) Dϕs (u), ∀t, s ≥ 0, ∀u ∈ U ⊆ Rn .(2.7)Îáîçíà÷èì ÷åðåç σi (t, u) = σi (Dϕt (u)), i = 1, 2, .., n ñèíãóëÿðíûå ÷èñëàìàòðèöû Dϕt (u) (ò.å. σi (t, u) > 0 è σi (t, u)2 ñîáñòâåííûå ÷èñëà ìàòðèöûDϕt (u)∗ Dϕt (u) ñ ó÷åòîì èõ êðàòíîñòè), óïîðÿäî÷åííûå ïî óáûâàíèþ: σ1 (t, u) ≥· · · ≥ σn (t, u) > 0 äëÿ âñåõ u ∈ U , t ≥ 0.
Ôóíêöèÿ ñèíãóëÿðíûõ ÷èñåë ïîðÿäêàd ∈ [0, n] â òî÷êå u ∈ U äëÿ ìàòðèöû Dϕt (u) îïðåäåëÿåòñÿ êàê⎧⎪⎪⎪ 1,⎪⎪⎪⎨ωd (Dϕt (u)) = ⎪ σ1 (t, u)σ2 (t, u) · · · σd (t, u),d = 0,⎪⎪⎪⎪d−d⎪⎩ σ1 (t, u) · · · σ (t, u)σ,dd+1 (u)d ∈ {1, 2, .., n},(2.8)d ∈ (0, n),ãäå d íàèáîëüøåå öåëîå, íå ïðåâûøàþùåå d. Çàìåòèì, ÷òî | det Dϕt (u)| =ωn (Dϕt (u)).Àíàëîãè÷íî, ââîäÿ ñèíãóëÿðíûå ÷èñëà äëÿ ïðîèçâîëüíûõêâàäðàòíûõ ìàòðèö, äëÿ ëþáûõ äâóõ n × n ìàòðèö A è B è ëþáîãî d ∈ [0, n]ïî íåðàâåíñòâó Õîðíà (Horn inequality) [140] ïîëó÷èì (ñì., íàïðèìåð, [63, ñ.28])ωd (AC) ≤ ωd (A)ωd (C),d ∈ [0, n].(2.9)80Ïóñòü íåïóñòîå ìíîæåñòâî K ⊂ U ⊆ Rn èíâàðèàíòíî îòíîñèòåëüíîäèíàìè÷åñêîé ñèñòåìû {ϕt }t≥0 , ò.å.