Главная » Просмотр файлов » Диссертация

Диссертация (1145314), страница 2

Файл №1145314 Диссертация (Пространства-времена с нестандартными причинными свойствами) 2 страницаДиссертация (1145314) страница 22019-06-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

С другой стороны, существует гипотеза [68], основанная на аналогии с плоским [67] или искривлённым двумерным [65] случаями, что упомянутые нарушения подчиняются некоторому «квантовомунеравенству» [144]. Если эта гипотеза — она была выдвинута и поддержана Романом,Фордом, Фьюстером и др. — верна, то некоторые грубые оценки, полученные ими всотрудничестве с Пфеннингом [143] и Эвереттом [64], показывают, что на практикесоздание кротовых нор и аналогичных пространств невозможно по «энергетическим»соображениям.— Как определить (не)существование кротовых нор наблюдательно? Ограничения, полученные Торресом и др. [158], распространяются только на норы очень специального типа (их массы, в частности, должны быть отрицательны).

Для полученияболее строгой оценки нужно знать больше об особенностях физики в окрестностяхкротовой норы. Естественно, например, ожидать, что в её присутствии достаточнонеобычно ведёт себя электрическое поле. Так, Уилер обратил внимание на то, что кротовина может создавать поле, имитирующее поле заряда [169]. Этот факт был уточнёнХуснутдиновым и Бахматовым, которые заметили [95], что пробный заряд вблизи кротовой норы будет подвержен ещё и самодействию (правда, величина последнего быланайдена в некотором неявном и немотивированном предположении).

Случай внутримировой кротовой норы ещё сложней: как указали Новиков и Фролов, созданное еюэлектростатическое поле может оказаться непотенциальным [73].— Устойчив ли процесс формирования машины времени? В двух наиболее лёгкихдля анализа случаях (пространство Мизнера и простейшая машина времени на основекротовины Морриса–Торна) появлению горизонта Коши предшествует возникновение«опасной» светоподобной геодезической, которая возвращается бесконечно много раз всколь угодно малую окрестность некоторой точки со всё большим синим смещением.Насколько общим является это свойство? Можно ли, например, избавиться от него,придав устьям кротовой норы вращение, как предположил Новиков [16]? Неустойчивость, связанную с опасной геодезической можно устранить, просто поместив междувходами кротовой норы поглощающий экран.

Но не свидетельствует ли само её существование о квантовой неустойчивости? Ещё в 1982 г. Хискок и Конковский обнаружили с помощью «метода изображений», что в пространстве Тауба-НУТ вакуумноеожидание тензора энергии-импульса конформно связанного скалярного поля расходится на горизонте Коши [87]. Затем этот результат был воспроизведён для разныхмашин времени и разных полей в большом числе работ. На это можно было бы не обращать внимания, так как метод изображений математически некорректен, но позжеЮртсевер получил похожий результат [171] и без использования этого метода.— Как «заставить» пространство-время эволюционировать требующимся нам образом? Частично эту проблему можно, как кажется, решить, заменив по предложению Новикова и Фролова перемещение устий (непонятно, как их перемещать) сла-—6—бым внешним гравитационным полем [73].

Однако это не решает основную проблему:как обеспечить единственность эволюции пространства-времени (или хотя бы неизбежность нарушения им причинности), не имея возможности ограничиться глобальногиперболическими пространствами (машина времени заведомо таковым не является)?Целью настоящей работы является теоретическое исследование возможностинарушения причинности и, в частности, ограничений на скорость передачи сигнала.Для достижения этой цели ставятся следующие задачи:— Сформулировать свойство математической модели Вселенной (пространства-времени с заданными на нём полями), соответствующее принципу причинностии прояснить логический статус этого свойства (следствие ОТО? эмпирическийфакт? независимый постулат?);— Выявить ограничения, налагаемые теорией относительности на скорость. Датьадекватное определение «скорости гравитации» и найти способ сравнения её соскоростью света;— Разработать понятие, объединяющее кротовую нору, пузырь Алькубиерре, трубуКрасникова и аналогичные им средства «сверхсветового» перемещения.

Исследовать их основные свойства;— Исследовать классическую устойчивость машин времени с компактно порождённым горизонтом Коши: выяснить условия, при которых исходная глобально гиперболическая область содержит «опасную» геодезическую;— Исследовать квантовую устойчивость машин времени, рассчитав в простейшемслучае (безмассовое скалярное поле в пространстве Мизнера) вакуумное ожидание тензора энергии-импульса и выяснив при каких значениях параметровзадачи это ожидание расходится на горизонте Коши;— Продемонстрировать на конкретном примере возможность отсутствия у машинывремени сингулярностей, «опасных» светоподобных геодезических и нужды вэкзотической материи;— Доказать, что любое пространство-время может проэволюционировать за горизонт Коши, не нарушая при этом условия причинности, то есть, что в рамкахклассической теории относительности машину времени невозможно создать;— Создать модель пустой (с классической точки зрения) сферически симметричнойкротовой норы, возникшей в ранней Вселенной, и выяснить влияние поляризациивакуума на её проходимость;—7—— Выяснить универсальность запрета на создание лазов, налагаемого квантовымнеравенством;— Рассчитать взаимодействие точечного электрического заряда с простейшей кротовой норой.Научная новизна и теоретическая значимость работы заключается в том, чторезультаты, которые впервые получены в ней, значительно приближают нас к выяснению того, могут ли существовать в природе такие явления, как нарушения причинности и сверхсветовое сообщение.

В частности, впервые:— введена и исследована система понятий, позволяющая в общем случае сравнивать скорость распространения гравитации и скорость света. Доказано, что в глобальногиперболическом случае первая не превышает вторую, если выполняются некоторыеобычные условия включая те, что обеспечивают единственность решения задачи Кошидля уравнений Эйнштейна;— разработана концепция «лаза», объединяющая кротовую нору, пузырь Алькубиерре, трубу Красникова и аналогичные им средства «сверхсветового» перемещения.Доказано, что существование лаза не исключается квантовым неравенством;— доказано, что развитию компактно определённого горизонта Коши хронологически предшествует появление «опасной» геодезической;— найдена машины времени лишённая известных патологий: сингулярностей,«опасных» светоподобных геодезических и нужды в экзотической материи;—- доказано, что создать машину времени в рамках классической теории относительности невозможно;— доказано отсутствие квантовой неустойчивости формирования машины времени в простейшем случае (безмассовое скалярное поле в пространстве Мизнера):наравне с состояниями, в которых ожидание тензора энергии-импульса расходится нагоризонте Коши, найдены вакуумы, в которых оно регулярно;— построена модель пустой (с классической точки зрения) сферически симметричной кротовой норы, возникшей в ранней Вселенной, и показано, что при определённых значениях её параметров она становится проходимой на макроскопическоевремя— найдено самодействие точечного неподвижного электрического заряда в присутствии короткой безмассовой кротовой норы.

При этом в отличие от предшествующих работ свободная часть электрического поля не фиксировалась физически немотивированным условием.— впервые доказано, что любая точка произвольного пространства-времени обладает предкомпактной выпуклой окрестностью, которая, как самостоятельное пространство-время, глобально гиперболична. Этот факт сильно облегчает некоторые доказательства.—8—Методы исследования. Диссертация состоит из двух частей, одна из которых посвящена исключительно классическому, а вторая полуклассическому рассмотрению.Соответственно, в первой части используется стандартный общерелятивистский метод: вселенная описывается пространством-временем, после чего исследуемые проблемы переводятся на язык дифференциальной геометрии.

Вторая же часть отличаетсятем, что вместо уравнений Эйнштейна предполагаются выполненными их полуклассические аналоги: справа стоит не тензор энергии-импульса, а среднее по некоторому состоянию от соответствующей квантовой наблюдаемой. Находится эта величинастандартными методами теории квантованных полей в искривлённом пространстве.Положения, выносимые на защиту:1.

Доказана теорема, гласящая, что любая точка произвольного пространства-времени обладает предкомпактной выпуклой окрестностью, которая, как самостоятельноепространство-время, глобально гиперболична.2. Формализовано представление о «скорости распространения гравитации», для чеговведено понятие альтернативы так, что сверхсветовая альтернатива соответствуетинтуитивному представлению о гравитационном сигнале, распространяющемся быстрее света. Полусверхсветовая альтернатива описывает ситуацию, в которой материальное тело движется медленнее света, но быстрее, чем двигался бы пробный фотонво вселенной, которая отличается от рассматриваемой тем фактом (и его следствиями), что в ней этот фотон был испущен вместо упомянутого тела.

Доказано, чтоа) Альтернатива, в которой оба пространства-времени глобально гиперболичны,не может быть полусверхсветовой.б) В некоторых естественных предположениях условия, обеспечивающие единственность решения задачи Коши для уравнений Эйнштейна, исключают сверхсветовые альтернативы.3. Введено понятие лаза, как пространства-времени, полученного такой деформацией некоторого времениподобного цилиндра в пространстве Минковского, что благодаряей точки снаружи от цилиндра, бывшие пространственноподобно разделёнными в исходном пространстве, становятся причинно связанными. Предложен лаз, имеющийтопологию R4 (в отличие от кротовой норы) и не нуждающийся в тахионах (в отличиеот пузыря Алькубиерре в той его версии, которая создаётся самим перемещающимся«быстрее света» телом). Доказано, что существование лазов не исключается «квантовым неравенством».4.

Характеристики

Тип файла
PDF-файл
Размер
2,87 Mb
Высшее учебное заведение

Список файлов диссертации

Пространства-времена с нестандартными причинными свойствами
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее