Диссертация (1145314), страница 53
Текст из файла (страница 53)
- P.3815.— 252 —[91] Janca A. J. So you want to stop time. // arxiv.org URL: http://arxiv.org/grqc/0701084 (дата обращения: 27.06.2014)[92] Kay B. S. The principle of locality and quantum field theory on (non globallyhyperbolic) curved spacetimes // Rev. Math. Phys.. - 1992. - V.Special Issue. P.167.[93] Kay B. S., Radzikowski M., Wald R. M. Quantum field theory on spacetims witha compactly generated Cauchy horizon // Comm. math. Phys.. - 1997. - V.183. P.533.[94] Khatsymovsky V. Rotating vacuum wormhole // Phys.
Lett. B. - 1998. - V.429. P.254.[95] Khusnutdinov N. R., Bakhmatov I. V. Self-force of a point charge in the space-timeof a symmetric wormhole // Phys. Rev. D.. - 2007. - V.76. - P.124015.[96] Krasnikov S. V. On the classical stability of a time machine // Class. QuantumGrav.. - 1994. - V.11. - P.2755.[97] Krasnikov S.
V. Topology changes without any pathology // Gen. Rel. Grav.. - 1995.- V.27. - P.529.[98] Krasnikov S. Quantum stability of the time machine // Phys. Rev. D.. - 1996. - V.54.- P.7322.[99] Krasnikov S. Causality violations and paradoxes // Phys. Rev. D..
- 1997. - V.55. P.3427.[100] Krasnikov S. A singularity free WEC respecting time machine // Class. QuantumGrav.. - 1998. - V.15. - P.997.[101] Krasnikov S. Hyper-fast travel in general relativity // Phys. Rev. D.. - 1998. - V.57.- P.4760.[102] Krasnikov S. Time machines with non-compactly generated Cauchy horizons and“handy singularities". // Proceedings of the 8-th Marcel Grossman Meeting onGeneral Relativity. - Singapore: World Scientific, 1999.[103] Krasnikov S. Quantum field theory and time machines // Phys.
Rev. D.. - 1999. V.59. - P.024010.[104] Krasnikov S. Traversable wormhole // Phys. Rev. D.. - 2000. - V.62. - P.084028.;Erratum // Phys. Rev. D.. - 2007. - V.76. - P.109902.— 253 —[105] Krasnikov S. Time travel paradox // Phys. Rev. D.. - 2002. - V.65. - P.064013.[106] Krasnikov S. No time machines in classical general relativity // Class.
QuantumGrav.. - 2002. - V.19. - P.4109.; Corrigendum: No time machines in classical generalrelativity // ibid.. - 2014. - V.31. - P.079503.[107] Krasnikov S. The quantum inequalities do not forbid spacetime shortcuts // Phys.Rev. D.. - 2003. - V.67. - P.104013.[108] Krasnikov S. Quantum inequalities and their applications // Gravitation andCosmology. - 2006. - V.46. - P.195.[109] Krasnikov S. Evaporation induced traversability of the Einstein-Rosen wormhole //Phys.
Rev. D.. - 2006. - V.73. - P.084006.[110] Krasnikov S. Unconventional stringlike singularities in flat spacetime // Phys. Rev.D.. - 2007. - V.76. - P.024010.[111] Krasnikov S. Electrostatic interaction of a pointlike charge with a wormhole //Class.
Quantum Grav.. - 2008. - V.25. - P.245018.[112] Krasnikov S. Falling into the Schwarzschild black hole. Important details //Gravitation and Cosmology. - 2008. - V.14. - P.362.[113] Krasnikov S. Even the Minkowski space is holed // Phys. Rev. D.. - 2009. - V.79. P.124041.[114] S. V. Krasnikov The Speed of Gravity in General Relativity // Gravitation andCosmology. - 2011. - V.17. - P.194.[115] Krasnikov S. Topological censorship is not proven // Gravitation and Cosmology.
2013. - V.19. - P.195.[116] Lamoreaux S. K. Demonstration of the Casimir force in the 0.6 to 6 µm range //Phys. Rev. Lett.. - 1997. - V.78. - P.5.[117] Leray J. Hyperbolic differential equations, duplicated notes. - Princeton Institutefor Advanced Studies, 1952.[118] Li L.-X. Must Time Machine Be Unstable against Vacuum Fluctuations? // Class.Quant. Grav.. - 1996.
- V.13. - P.2563.[119] Li L.-X. Time Machines Constructed from Anti-de Sitter Space // Phys. Rev. D.. 1999. - V.59. - P.084016.— 254 —[120] Li L.-X. Two Open Universes Connected by a Wormhole: Exact Solutions // J.Geom. Phys.. - 2001. - V.49. - P.254.[121] Lossev A., Novikov I. D. The Jinn of the time machine: non-trivial selfconsistentsolutions // Class. Quantum Grav.. - 1992. - V.9. - P.2309.[122] Low R. J.
Speed limits in general relativity // Class. Quantum Grav.. - 1999. - V.16.- P.543.[123] Low R. J. Time machines, maximal extensions and Zorn’s lemma // Class. QuantumGrav.. - 2012. - V.29. - P.097001.[124] Maeda H., Harada T., Carr B. J. Cosmological wormholes // Phys. Rev. D.. - 2009.- V.79. - P.044034.[125] Maeda K., Ishibash A., Narita M. Chronology protection and non-naked singularity// Class.
Quantum Grav.. - 1637. - V.15. - P.1998.[126] Manchak J. B. Is spacetime hole-free? // Gen. Rel. Grav.. - 2009. - V.41. - P.1639.[127] Manchak J. B. No no-go: a remark on time machines // Stud. Hist. Phil. Mod. Phys..- 2011. - V.42. - P.74.[128] Matyjasek J. < Tνµ >ren of the quantized conformal fields in the Unruh state in theSchwarzschild spacetime // Phys. Rev. D..
- 1999. - V.59. - P.044002.[129] Mensky M. B., Novikov I. D. Three-dimensional billiards with time machine // Int.J. Mod. Phys. D.. - 1996. - V.5. - P.179.[130] Minguzzi E. Causally simple inextendible spacetimes are hole-free // J. Math. Phys..- 2012. - V.53. - P.062501.[131] Misner C. W., Wheeler J.
A. Classical physics as geometry // Annals of Physics. 1957. - V.2. - P.525.[132] Morris M. S., Thorne K. S. Wormholes in spacetime and their use for interstellartravel: A tool for teaching general relativity // Am. J. Phys.. - 1988. - V.56. - P.395.[133] Morris M. S., Thorne K. S., Yurtsever U.
Wormholes, time machines, and the weakenergy condition // Phys. Rev. Letters. - 1988. - V.61. - P.1446.[134] Nahin P. J. Time machines. - New York: Springer-Verlag, 1999.[135] Olum K. Superluminal travel requires negative energies // Phys. Rev. Lett..
- 1998.- V.81. - P.3567.— 255 —[136] O’Neill B. Semi-Riemannian geometry. - New York: Academic Press, 1983.[137] Ori A. Formation of closed timelike curves in a composite vacuum/dustasymptotically-flat spacetime // Phys. Rev. D.. - 2007. - V.76. - P.044002.[138] Page D. Particle emission rates from a black hole: Massless particles from anuncharged, nonrotating hole // Phys. Rev. D.. - 1976. - V.13. - P.198.[139] Page D. Thermal stress tensor in Einstein spaces // Phys.
Rev. D.. - 1982. - V.25. P.1499.[140] Penrose R. Techniques of differential topology in relativity. - SIAM, 1983.[141] Penrose R. Singularities and time-asymmetry // General relativity: an Einsteincentenary survey. - Cambridge: Cambridge University Press, 1992.[142] Penrose R. The question of Cosmic Censorship // J. Astrophys. Astr.. - 1999.
- V.20.- P.233.[143] Pfenning M. J., Ford L. H. The unphysical nature of “Warp Drive” // Class. QuantumGrav. - 1997. - V.14. - P.1743.[144] Pfenning M. J., Ford L. H. Quantum inequality restrictions on negative energydensities in curved spacetimes. // arxiv.org URL: http://arxiv.org/pdf/grqc/9805037 (дата обращения: 27.06.2014). gr-qc/9805037.[145] Politzer H. D.
Simple quantum systems in spacetimes with closed timelike curves// Phys. Rev. D.. - 1992. - V.46. - P.4470.[146] Quinn T. C., Wald R. M. Axiomatic Approach to electromagnetic and gravitationalradiation reaction of particles in curved spacetime // Phys. Rev. D.. - 1997. - V.56.- P.3381.[147] Rendall A. D. Theorems on existence and global dynamics for the Einstein equations// Living Rev.
Relativity. - 2005. - V.8. - P.6.[148] Recami E. On localized “X-shaped” superluminal solutions to Maxwell equations //Physica A.. - 1998. - V.252. - P.586.[149] Roman T. A. Some Thoughts on Energy Conditions and Wormholes // Proceedingsof the Tenth Marcel Grossmann Meeting on General Relativity. - Rio de Janeiro,2003.[150] Schmidt B.
G. A new definition of singular points in general relativity // Gen. Rel.Grav.. - 1971. - V.1. - P.269.— 256 —[151] Sparnaay M. Measurements of attractive forces between flat plates // Physica. 1958. - V.24. - P.751.[152] Sushkov S. V. A selfconsistent semiclassical solution with a throat in the theory ofgravity // Phys. Lett. A.. - 1992. - V.164. - P.33.[153] Sushkov S. V. Quantum complex scalar field in two-dimensional spacetime withclosed timelike curves and a time-machine problem // Class. Quantum Grav.. 1995. - V.12. - P.1685.[154] Sushkov S.
V. Chronology protection and quantized fields: complex automorphicscalar field in Misner space // Class. Quantum Grav.. - 1997. - V.14. - P.523.[155] Takahashi R., Asada H. Observational upper bound on the cosmic abundancesof negative-mass compact objects and Ellis wormholes from the Sloan digital skysurvey quasar lens search // Ap. J.. - 2013. - V.768L. - P.16.[156] Tipler F. Singularities and causality violation // Ann. Phys.. - 1977.
- V.108. - P.1.[157] Tolman R. C. The Theory of Relativity of Motion. - California Press. 1917.[158] Torres D. F., Romero G. E.,. Anchordoqui L. A. Might some gamma ray bursts bethe observable signature of natural wormholes? // Phys. Rev. D.. - 1998. - V.58. P.123001.[159] Van Den Broeck C. A ‘warp drive’ with more reasonable total energy requirements// Class. Quantum Grav. - 1999. - V.16. - P.3973.[160] van Stockum W. J. The gravitational field of a distribution of particles rotatingaround an axis of symmetry // Proc. Roy.
Soc. Edin.. - 1937. - V.57. - P.135.[161] Visser M. Lorentzian wormholes — from Einstein to Hawking. - New York: AIPPress. 1995.[162] Visser M. The reliability horizon for semi-classical quantum gravity: Metricfluctuations are often more important than back-reaction // Phys. Lett. B..
- 1997.- V.415. - P.8.[163] Vollick D. N. How to produce exotic matter using classical fields // Phys. Rev. D.. 1997. - V.56. - P.4720.[164] Wald R. M. Gravitational collapse and cosmic censorship. // arxiv.org URL:http://arxiv.org/pdf/gr-qc/9710068 (дата обращения: 27.06.2014). .[165] Wald R. M. General relativity. - Chicago: University of Chicago Press, 1984.— 257 —[166] Wald R. M. Quantum field theory in curved spacetime and black holethermodynamics. - Chicago: University of Chicago Press, 1994.[167] Wang Y.
e. a. Current observational constraints on cosmic doomsday // JCAP. 2004. - V.12. - P.006.[168] Wheeler J. A. Neutrinos, gravitation and geometry. - Bologna. 1960.[169] Wheeler J. A. Geometrodynamics - New York: Academic Press, 1992.[170] Yodzis P. Lorentz cobordism // Commun. math. Phys.. - 1972. - V.26. - P.39.[171] Yurtsever U. Classical and quantum instability of compact Cauchy horizons in twodimensions // Class. Quantum Grav.. - 1991. - V.8. - P.1127.[172] Yurtsever U. Algebraic approach to quantum field theory on non-globally-hyperbolicspacetimes // Class. Quantum Grav..
- 1994. - V.11. - P.999..