Диссертация (1145314), страница 52
Текст из файла (страница 52)
- Т.128.- С.236.[18] Постников М. М. Лекции по геометрии семестр V. Риманова геометрия. - М.:Наука, 1998.[19] Суетин П. К. Классические ортогональные многочлены. Изд. 2-е. - М.:Наука,1979.[20] Сушков С. В., частное сообщение[21] Угаров В. А. Специальная теория относительности.
- М.: Наука, 1977.[22] Федорюк М. В. Асимптотика: интегралы и ряды. - М.: Наука, 1987.[23] Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. ТомI. - М.: ОГИЗ, 1947)[24] Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. ТомII. - М.: ОГИЗ, 1948.[25] Фок В.
А. Теория пространства, времени и тяготения. - М.: Государственноеиздательство физико-математической литературы, 1961.[26] Хирш М. Дифференциальная топология. - М.: Мир, 1979.[27] Хокинг С., Эллис Дж. Крупномасштабная структура пространства-времени. М.: Мир, 1977.[28] Чонка П.
Л. Причинносит и сверхсветовые частицы // Эйнштейновский сборник.1973. - М.: Наука, 1974.[29] Эйнштейн А. Cобрание научных трудов в четырех томах. - М.: Наука, 1967.[30] Alcubierre M. The warp drive: hyperfast travel within general relativity // Class.Quantum Grav.. - 1994. - V.11. - P.L73.[31] Andersson L. The global existence problem in general relativity // 50 years of theCauchy problem in general relativity. - Basel: Birkhauser, 2004.— 248 —[32] Anisovich K. V. In Problems of high energy physics and field theory (Proceedingsof the XIV workshop) - M.: Nauka, 1992.[33] Arefeva I.
Ya., Catalysis of black holes/wormholes formation in high energycollisions // Phys. Part. Nucl.. - 2010. - V.41. - P.835.[34] Banach R. and Dowker J. S. Automorphic field theory — some mathematical issues// J. of Phys. A.. - 1979. - V.12. - P.2527.[35] Barceló C. and Visser M. Traversable wormholes from massless conformally coupledscalar fields // Phys.
Lett. B. - 1999. - V.466. - P.127.[36] J. M. Bardeen Black holes do evaporate thermally // Phys. Rev. Lett.. - 1981. V.46. - P.382.[37] Beem J. and Ehrlich P. Global Lorentzian Geometry. - New York: Marcel Dekker.Ink., 1981.[38] Bernal A. N., Sánchez M.
On smooth Cauchy hypersurfaces and Geroch’s splittingtheorem // Commun. math. Phys.. - 2003. - V.243. - P.461.[39] Boisseau B., Linet B. Electrostatics in a simple wormhole revisited // Gen. Rel.Grav.. - 2013. - V.45. - P.845.[40] Bradbury R. A sound of thunder // The stories of Ray Bradbury. - New York:Alfred A. Knopf, 1980.[41] Brickell F., Clark R. S. Differentiable manifolds: an introduction. - London: VanNostrand Reinhold company, 1970)[42] Bronnikov K. A.
Scalar-tensor theory and scalar charge // Acta Phys. Pol. B. 1973. - V.4. - P.251.[43] Bronnikov K. A., Kim S.-W. Possible wormholes in a brane world // Phys. Rev. D..- 2003. - V.67. - P.064027.[44] Brout R., Massar S., Parentani R., Spindel Ph. Primer for black hole quantumphysics // Phys.
Reports.. - 1995. - V.260. - P.329.[45] Capelas de Oliveira E., Rodrigues W. A. Finite energy superluminal solutions ofMaxwell equations // Phys. Lett. A.. - 2001. - V.291. - P.367.[46] Choquet-Bruhat Y., Geroch R. Global aspects of the Cauchy problem in generalrelativity // Commun. math. Phys.. - 1969. - V.14.
- P.329.— 249 —[47] Christensen S. M., Fulling S. A. Trace anomalies and the Hawking effect //Phys. Rev. D.. - 1977. - V.15. - P.2088.[48] Chruściel P. T. A remark on differentiability of Cauchy horizons // Class. QuantumGrav.. - 1998. - V.15. - P.3845.[49] Chruściel P. T., Isenberg J. On the dynamics of generators of Cauchy horizons.
//arxiv.org URL: http://arxiv.org/pdf/gr-qc/9401015 (дата обращения: 27.06.2014).[50] Clarke C. J. S. Singularities in Globally Hyperbolic Space-Time // Commun. math.Phys.. - 1975. - V.41. - P.65.[51] Clarke C. J. S. The analysis of space-time singularities. - Cambridge: CambridgeUniversity Press, 1993.[52] Coule D.
H. No warp drive // Class. Quantum Grav.. - 1998. - V.15. - P.2523.[53] Cramer C. R., Kay B. S. Stress-Energy Must be Singular on the Misner SpaceHorizon even for Automorphic Fields // Class. Quantum Grav.. - 1996. - V.13. P.L143.[54] Cramer C. R. and Kay B. S. The thermal and two-particle stress-energy must beill-defined on the 2-d Misner space chronology horizon // Phys.
Rev. D.. - 1998. V.57. - P.1052.[55] Cramer J. G., et al. Natural wormholes as gravitational lenses // Phys. Rev. D.. 1995. - V.51. - P.3117.[56] Deutsch D. Quantum mechanics near closed timelike lines // Phys. Rev. D.. - 1991.- V.44. - P.3197.[57] DeWitt B. S. Hart, C.
F., Isham C. J. Topology and quantum field-theory // PhysicaA.. - 1979. - V.96. - P.197.[58] Eardley D. Moncrief V. The global existence problem and cosmic censorship ingeneral relativity // Gen. Rel. Grav.. - 1981. - V.13. - P.887.[59] Echeverria F., Klinkhammer G., Thorne K. S. Billiard balls in wormhole spacetimeswith closed timelike curves: Classical theory // Phys. Rev.
D.. - 1991. - V.44. P.1077.[60] Ellis G. F. R., Schmidt B. G. Singular Space-Times // Gen. Rel. Grav.. - 1977. - V.8.- P.915.— 250 —[61] Ellis H. G. Ether flow through a drainhole: A particle model in general relativity //J. Math. Phys. - 1971. - V.14.
- P.104.[62] Elster T. Vacuum polarization near a black hole creating particles // Phys. Lett. A..- 1983. - V.94. - P.205.[63] Everett A. Warp drive and causality // Phys. Rev. D.. - 1996. - V.53. - P.7365.[64] Everett A. E., Roman T. A. Superluminal subway: the Krasnikov tube // Phys. Rev.D..
- 1997. - V.56. - P.2100.[65] Flanagan É. É. Quantum inequalities in two dimensional curved spacetimes // Phys.Rev. D.. - 2002. - V.66. - P.104007.[66] Ford L. H., Pfenning M. J., Roman T. A. Quantum inequalities and singular negativeenergy densities // Phys. Rev. D.. - 1998. - V.57. - P.4839.[67] Ford L. H., Roman T. A. Averaged energy conditions and quantum inequalities //Phys.
Rev. D.. - 1995. - V.51. - P.4277.; Ford L. H., Roman T. A. Restrictions onnegative energy density in flat spacetime // Phys. Rev. D.. - 1997. - V.55. - P.2082.[68] Ford L. H., Roman T. A. Quantum field theory constrains traversable wormholegeometries // Phys. Rev. D.. - 1996. - V.53. - P.5496.[69] Friedman J. L., Morris M. S. Existence and uniqueness theorems for massless fieldson a class of spacetimes with closed timelike curves // Commun. math. Phys.. 1997.
- V.186. - P.495.[70] Friedman J. L., Papastamatiou N. J., Simon J. Z. Failure of unitarity for interactingfields on spacetimes with closed timelike curves // Phys. Rev. D.. - 1992. - V.46. P.4456.[71] Friedman J. L., Schleich K., Witt D. M. Topological censorship // Phys. Rev. Lett..- 1993. - V.71. - P.1486.[72] Frolov V. P. Vacuum polarization in a locally static multiply connected spacetimeand time machine problem // Phys. Rev.
D.. - 1991. - V.43. - P.3878.[73] Frolov V. P., Novikov I. D. Physical effects in wormholes and time machines //Phys. Rev. D.. - 1990. - V.42. - P.1057.[74] Fuller R. W., Wheeler J. A. Causality and multiply connected space-time // Phys.Rev.. - 1962. - V.128. - P.919.— 251 —[75] Gao S., Wald R. M. Class. Quantum Grav.// Theorems on gravitational time delayand related issues.
- 2000. - V.17. - P.4999.[76] Geroch R. Topology in general relativity // J. Math. Phys.. - 1967. - V.8. - P.782.[77] Geroch R. Spinor structure of space-times in general relativity. I // J. Math. Phys..- 1968. - V.9. - P.1739.[78] Geroch R. Prediction in General Relativity // Foundations of Space-Time Theories,Minnesota Studies in the Philosophy of Science. Vol. VIII.
- Minneapolis: Universityof Minnesota Press, 1977.[79] Geroch R., Horowitz G. T. Global structure of spacetimes // General Relativity: AnEinstein Centenary Survey. - Cambridge: Cambridge University Press, 1979.[80] Gibbons G. W., Hawking S. W. Selection rules for topology change // Commun.math. Phys.. - 1992. - V.148. - P.345.[81] Grave P., Plante J.-L. Simple and double walled Krasnikov tubes: I.
Tubes with lowmasses // Class. Quantum Grav.. - 2004. - V.21. - P.L7.[82] Griffiths J. B., Podolsky J. Exact space-times in Einstein’s general relativity. Cambridge, Cambridge University Press, 2009.[83] Harrison H. The Technicolor time machine. - New York: Doubleday, 1967.[84] Hajicek P.
Origin of Hawking radiation // Phys. Rev. D.. - 1987. - V.36. - P.1065.[85] Hawking S. W. Chronology protection conjecture // Phys. Rev. D.. - 1992. - V.46. P.603.[86] Hayward S., Koyama H. How to make a traversable wormhole from a Schwarzschildblack hole // Phys. Rev. D.. - 2004. - V.70. - P.101502.[87] Hiscock W. A., Konkowski D. A. Quantum vacuum energy in Taub-NUT-typecosmologies // Phys. Rev.
D.. - 1982. - V.26. - P.1225.[88] Hochberg D., Popov A., Sushkov S. V. Self-consistent wormhole solutions ofsemiclassical gravity // Phys. Rev. Lett.. - 1997. - V.78. - P.2050.[89] Hochberg D., Visser M. Geometric structure of the generic static traversablewormhole throat // Phys. Rev. D.. - 1997. - V.56. - P.4745.[90] Ishibashi A., Wald R. M. Dynamics in non-globally-hyperbolic static spacetimes II:general analysis of prescriptions for dynamics // Class. Quantum Grav.. - 2003. V.20.