Диссертация (1136178), страница 30
Текст из файла (страница 30)
(3.26)R2Çàìå÷àíèå3.1. Óðàâíåíèå (3.24) ÿâëÿåòñÿ íåëèíåéíûì èíòåãðàëü-íûì óðàâíåíèåì. Ðàíåå ïðè íàõîæäåíèè ñåðèè àñèìïòîòè÷åñêèõ ñîáñòâåííûõ ôóíêöèé äëÿ îïåðàòîðà Õàðòðè íåëèíåéíîå èíòåãðàëüíîåóðàâíåíèå íà ñôåðå âîçíèêàëî â ðàáîòåÏóñòü ïðè íåêîòîðîìg0 =p = 0, 1, 2, . .
.[30].÷èñëî(p)E1 = E1,iè ôóíêöèÿ(p)g0,i ÿâëÿþòñÿ ðåøåíèåì çàäà÷è (3.24), (3.25). Îïðåäåëèì ÷èñëî251(p)λn,iïî ôîðìóëå (0.34), à òàêæå ôóíêöèþ(p)ψn,i3/2=εpXcj vn,p−j,j (εq),j=0ãäåvn,k,nrçàäàþòñÿ ôîðìóëîé (3.3), à êîýôôèöèåíòûñ êîýôôèöèåòòàìè ðàçëîæåíèÿñîâïàäàþòñîãëàñíî (3.20)(ñì.
òåîðåìó 3.1.).(p)ψn,i âûðàæàåòñÿ ÷åðåç ïðèñîåäèíåííûå ïîëèíîìû Ëåæàíäðà îò cos θ è, ñëåäîâàòåëüíî, óäîâëåòâîðÿåò ãðàíè÷íûì óñëîâèÿì ïî θ . ÑïðàâåäëèâàÎòìåòèì, ÷òî â îòëè÷èå îòÒåîðåìà 3.2.g0g0cjôóíêöèÿ(p)Ïðè ε → 0 è n ïîðÿäêà ε−1/2 ÷èñëî λn,i ÿâëÿåòñÿ(p)àñèìòîòè÷åñêèì ñîáñòâåííûì çíà÷åíèåì, à ôóíêöèÿ ψn,i ãëàâíûì ÷ëåíîì ðàçëîæåíèÿ ñîîòâåòñòâóþùåé àñèìïòîòè÷åñêîéñîáñòâåííîé ôóíêöèè çàäà÷è(0.32), (0.33)â ïðîñòðàíñòâå L2 (R3 ).(p)×èñëî λn,i ðàñïîëîæåíî âáëèçè âåðõíåé ãðàíèöû ñïåêòðàëüíîãî(p)êëàñòåðà, îòâå÷àþùåãî êâàíòîâîìó ÷èñëó n, à ôóíêöèÿ ψn,i ïîmod O(n) ñîñðåäîòî÷åíà âáëèçè îêðóæíîñòè Γ = {(r, θ, ϕ) | r =2n2 , θ = π/2} â R3 .Çàìå÷àíèå3.2.
Ïîïðàâêà ê(p)ψn,iñòðîèòñÿ àíàëîãè÷íî (3.23), îäíàêîèìååò âåñüìà ãðîìîçäêèé âèä.1.4.Ðåøåíèå ñïåêòðàëüíîé çàäà÷è íà ïîäïðîñòðàíñòâàõH0 , H1Íàéäåì ðåøåíèå çàäà÷è (3.24), (3.25) ïðè(0)g0,0p = 0.Áóäåì èñêàòüâ âèäå(0)(0)g0,0=(0)c0 β0,0c22= √0 e−(s +τ )/2 .π ñèëó óñëîâèÿ íîðìèðîâêè (3.25) êîíñòàíòà(0)c0(3.27)óäîâëåòâîðÿåò ðà-âåíñòâó(0)c0 = 1.(3.28)252Çàìå÷àíèå3.3. Ôîðìóëû äëÿ àñèìïòîòè÷åñêèõ ñîáñòâåííûõ ôóíê-öèé ïðèâîäÿòñÿ ñ òî÷íîñòüþ äî ïðîèçâîëüíîãî ìíîæèòåëÿ âèäàãäåeiϕ ,ϕ ∈ R.Ïîäñòàâëÿÿ (3.27) â ñîîòíîøåíèå (3.26), èìååì:(0)E1,0Z13 ln 2− 3=2π4π02×e−sln((τ 0 − τ 00 )2 + (s0 − s00 )2 )×R4−τ 02 −(s00 )2 −(τ 00 )2dτ 0 ds0 dτ 00 ds00 .(3.29)Äàëåå, äåëàÿ çàìåíó ïåðåìåííûõξ = τ 00 − τ 0 ,à òàêæå ó÷èòûâàÿ ïðèn=0η = s00 − s0 ,(3.30)ðàâåíñòâî [79]√Z2r2n e−2r dr =Rπ(2n)!√ ,23n 2n!n = 0, 1, 2, .
. . ,(3.31)ïðåîáðàçóåì (3.29) ê âèäó(0)E1,03 ln 21=− 22π8πZln(ξ 2 + η 2 )e−(ξ2+η 2 )/2dξdη.(3.32)R2Íàêîíåö, ïåðåõîäÿ â ïðàâîé ÷àñòè (3.32) ê ïîëÿðíûì êîîðäèíàòàìξ = ρ cos ϕ, η = ρ sin ϕZè èñïîëüçóÿ èíòåãðàë [79]∞e−r/2 ln rdr = −2γ + 2 ln 2,0ãäåγ ïîñòîÿííàÿ Ýéëåðà, íàõîäèì, ÷òî(0)E1,013 ln 2− 2=2π8π13 ln 2−=2π8πZ0Z02πZ∞2ln ρ2 e−ρ/2ρdρdϕ =0∞e−r/2 ln rdr =5 ln 2 + γ.4π(3.33)253Ïðèp=1(1)ðåøåíèå áóäåì èñêàòü â âèäå(1)r(1)g0,i = c0,i β0,1 + c1,i β1,0 = −ãäå(1)(1)c0,i , c1,i2 −(s2 +τ 2 )/2 (1)(1)e(c0,i τ + c1,i s),π(3.34) êîíñòàíòû. Ïîäñòàâëÿÿ ôóíêöèþ (3.34) â (3.24), (3.25),ïðèõîäèì ê ñèñòåìå óðàâíåíèé(1)(1)(1)(1)(1)(1)(1)(1)(4πE1 − 6 ln 2)c0 + I(c0 , c1 ) = 0,(3.35)(4πE1 − 6 ln 2)c1 + I(c1 , c0 ) = 0,(1)(3.36)(1)| c0 |2 + | c1 |2 = 1,(3.37)ãäå(1) (1)I(c0 , c1 )4= 2πZ0 2ln((τ 0 − τ 00 )2 + (s0 − s00 )2 )e−((s )+(τ 0 )2 +(s00 )2 +(τ 00 )2 )×R4(1)(1) (1)(1)(1) (1)×[| c0 |2 (τ 0 )2 + | c1 |2 (s0 )2 + (c0 c1 + c0 c1 )s0 τ 0 ]×(1)(1)×[c0 (τ 00 )2 + c1 s00 τ 00 ]dτ 0 ds0 dτ 00 ds00 .( Èíäåêñiäëÿ êðàòêîñòè îáîçíà÷åíèé îïóùåí.)Âû÷èñëèì âõîäÿùèé â(1)(1)I(c0 , c1 )èíòåãðàë.
Äåëàÿ çàìåíó ïå-ðåìåííûõ (3.30), èìååì:(1) (1)I(c0 , c1 )4= 2πZln(ξ 2 + η 2 )e−(ξR22+η 2 )/2(1)(1)I1 (c0 , c1 , ξ, η)dξdη.(3.38)Çäåñü(1) (1)I1 (c0 , c1 , ξ, η)(1) (1)Z=(1) (1)0e−2(s +η/2)R2(1)2−2(τ 0 +ξ/2)2(1)(1)[|c0 |2 (τ 0 )2 + |c1 |2 (s0 )2 +(1)+(c0 c1 + c0 c1 )s0 τ 0 ][c0 (ξ + τ 0 )2 + c1 (ξ + τ 0 )(η + s0 )]dτ 0 ds0 .254x = s0 + η/2, y = τ 0 + ξ/2n = 0, 1, 2 íàõîäèì, ÷òîÄåëàÿ äàëåå åùå îäíó çàìåíóðàâåíñòâàìè (3.31) ïðè(1)(1)I1 (c0 , c1 , ξ, η) =(1) (1)(1)è ïîëüçóÿñüπ(1)(1)(1)(1)(1) (1){3 | c0 |2 c0 + | c1 |2 c0 + (c0 c1 +32(1)(1)(1) (1)(1) (1)(1)+c0 c1 )c1 + +[| c0 |2 ξ 2 + | c1 |2 η 2 + (c0 c1 + c0 c1 )ξη]c0 −(1)(1) (1)(1)(1) (1)(1)(1) (1)(1) (1)(1)−[4 | c0 |2 c0 + (c0 c1 + c0 c1 )c1 ]ξ 2 − 2[(c0 c1 + c0 c1 )c0 +(1)(1)(1)(1) (1)(1) (1)(1)+(| c0 |2 + | c1 |2 )c1 ]ξη − (c0 c1 + c0 c1 )c1 η 2 +(1)(1)(1)(1)+[| c0 |2 + | c1 |2 + | c0 |2 ξ 2 + | c1 |2 η 2 +(1) (1)(1) (1)(1)(1)+(c0 c1 + c0 c1 )ξη](c0 ξ 2 + c1 ξη)}.(3.39)Ïîäñòàâèì, íàêîíåö, ïðàâóþ ÷àñòü (3.39) â (3.38).
Ïåðåõîäÿ âïîëó÷èâøåìñÿ èíòåãðàëå ê ïîëÿðíûì êîîðäèíàòàì, à òàêæå èñïîëüçóÿ (3.33) è ðàâåíñòâà [79]Z∞n −r/2r en+1ln rdr = n!20ïðènX1k=1n = 1, 2,Ëåììà 3.2.k− γ + ln 2 ,n = 1, 2, . . .ïðèõîäèì ê ñëåäóþùåé ëåììå.Ñïðàâåäëèâî ðàâåíñòâî(1)(1) (1)I(c0 , c1 )5(1)(1)(1)(1) (1)(1) (1) c= (ln 2−γ + )(| c0 |2 + | c1 |2 )c0 +(c0 c1 −c0 c1 ) 1 .88(3.40)Ñ ó÷åòîì (3.40) ñèñòåìà óðàâíåíèé (3.35) (3.37) ïðèíèìàåòâèä(1)(1)(4πE15 (1)(1) (1)(1) (1) c− 5 ln 2 − γ + )c0 + (c0 c1 − c0 c1 ) 1 = 0,88(1)(4πE15 (1)(1) (1)(1) (1) c− 5 ln 2 − γ + )c1 − (c0 c1 − c0 c1 ) 0 = 0,88(3.41)(1)(1)(1)| c0 |2 + | c1 |2 = 1.(3.42)(3.43)255Ñèñòåìà (3.41) (3.43) ïðè(1)E1,0 =515 ln 2 + γ −4π8èìååò îäíîïàðàìåòðè÷åñêîå ñåìåéñòâî âåùåñòâåííûõ ðåøåíèé(1)c0,0 = cos α,ãäåα ∈ R,à ïðè(1)E1,1 =(1)c1,0 = sin α,(3.44)135 ln 2 + γ −4π4 êîìïëåêñíûå ðåøåíèÿ1(1)c0,1 = √ ,2i(1)c1,1 = ± √ .2(3.45)ÑïðàâåäëèâàÒåîðåìà 3.3.(3.25)Ïðè p = 0, 1 ñîáñòâåííûå çíà÷åíèÿ çàäà÷èèìåþò âèä(0.35)(0.37),à ñîîòâåòñòâóþùèå ñîáñòâåííûåôóíêöèè ïðè p = 0 îïðåäåëÿþòñÿ ðàâåíñòâàìèp = 1 ðàâåíñòâàìè1.5.(3.24),(3.27), (3.28),à ïðè(3.34), (3.44), (3.45).Ñïåêòðàëüíàÿ çàäà÷à íà ïîäïðîñòðàíñòâåH2 .Âåùåñòâåííûå ðåøåíèÿÏðèp=2áóäåì èñêàòü ðåøåíèå çàäà÷è (3.24), (3.25) â âèäå(2)(2)(2)(2)g0,i = c0,i β0,2 + c1,i β1,1 + c2,i β2,0 =√122(2)(2)(2)= √ e−(s +τ )/2 [c0,i (2τ 2 − 1) + c1,i 2 2τ s + c2,i (2s2 − 1)].2π(3.46)Òîãäà ñèñòåìà (3.24), (3.25) ïðèìåò âèä(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(4πE1 − 6 ln 2)c0 + I2 (c0 , c1 , c2 ) = 0,(4πE1 − 6 ln 2)c1 + I3 (c0 , c1 , c2 ) = 0,(3.47)(3.48)256(2)(2)(2)(2)(2)(4πE1 − 6 ln 2)c2 + I2 (c2 , c1 , c0 ) = 0,(2)(2)(3.49)(2)| c0 |2 + | c1 |2 + | c2 |2 = 1.(3.50)Çäåñü(2) (2) (2)I2 (c0 , c1 , c2 )1= 24π(2)Z(2)0 2ln((τ − τ 0 )2 + (s − s0 )2 )e−((s )+(τ 0 )2 +s2 +τ 2 )×R4(2)×I4 (c0 , c1 , c2 , τ 0 , s0 , τ, s)(2τ 2 − 1)dτ 0 ds0 dτ ds,Z10 20 222(2) (2) (2)ln((τ − τ 0 )2 + (s − s0 )2 )e−((s ) +(τ ) +s +τ ) ×I3 (c0 , c1 , c2 ) = √2π 2 R4(2)(2)(2)×I4 (c0 , c1 , c2 , τ 0 , s0 , τ, s)τ sdτ 0 ds0 dτ ds,ãäå(2)(2)(2)(2)(2)I4 (c0 , c1 , c2 , τ 0 , s0 , τ, s) = {| c0 |2 (2(τ 0 )2 − 1)2 + 8 | c1 |2 (τ 0 s0 )2 +√ (2) (2)(2)(2) (2)+ | c2 |2 (2(s0 )2 − 1)2 + 2 2(c0 c1 + c0 c1 )τ 0 s0 (2(τ 0 )2 − 1)+√ (2) (2)(2) (2)(2) (2)(2) (2)+2 2(c2 c1 + c2 c1 )τ 0 s0 (2(s0 )2 − 1) + (c0 c2 + c0 c2 )(2(τ 0 )2 − 1)×√ (2)(2)(2)×(2(s0 )2 − 1)}[c0 (2τ 2 − 1) + 2 2c1 τ s + c2 (2s2 − 1)].( Èíäåêñiñíîâà îïóùåí.)Âû÷èñëåíèÿ, àíàëîãè÷íûå ñëó÷àÿìp = 0, 1,íî çíà÷èòåëüíîáîëåå ãðîìîçäêèå, ïðèâîäÿò ê ñëåäóþùåé ëåììå.Ëåììà 3.3.(2)Ñïðàâåäëèâû ðàâåíñòâà(2)(2)(2)(2)(2)I2 (c0 , c1 , c2 ) = (ln 2 − γ)(| c0 |2 + | c1 |2 + | c2 |2 )+(2)1c2 (2) 2 247 (2)(2)(2)(2) (2)+{| c0 |c0 ++ | c1 |2 153c0 − c2 + | c2 |2 ×12822(2)343 (2) c2 (2) (2)(2) (2) (2)(2) (2)×c0 +− 15 c0 c1 + c0 c1 c1 − 9 c2 c1 +22(2)(2) (2) (2)+c2 c1 c1+(2) (2)c0 c2+(2) (2) c0 c2c09 (2) − c2 },22(3.51)257(2)(2)(2)(2)(2)(2)I3 (c0 , c1 , c2 ) = (ln 2 − γ)(| c0 |2 + | c1 |2 + | c2 |2 )+1(2)(2)(2)(2)(2)(2){153 | c0 |2 c1 + 142 | c1 |2 c1 + 153 | c2 |2 c1 −128(2) (2) (2)(2) (2)(2) (2) (2)(2) (2) (2)− c0 c2 + c0 c2 c1 − c0 c1 + c0 c1 15c0 + 9c2 −(2) (2)(2) (2) (2)(2) − c2 c1 + c2 c1 9c0 + 15c2 }.(3.52)+Ñ ó÷åòîì (3.51), (3.52) ñèñòåìà óðàâíåíèé (3.47) (3.50) ïðèíèìàåò âèä(2)−σ (2) c0 ++|(2)c2 |2|(2)247 (2) c2 (2)(2)(2) c0 ++ | c1 |2 153c0 − c2 +22(2)c0 |2(2)343 (2) c2 (2) (2)(2) (2) (2)(2) (2)c0 +− 15 c0 c1 + c0 c1 c1 − 9 c2 c1 +22(2)(2) (2) (2)+c2 c1 c1+(2)(2) (2)c0 c2(2)+(2) (2) c0 c2(2)c09 (2) − c2 = 0,22(2)(2)(2)(3.53)(2)−σ (2) c1 + 153 | c0 |2 c1 + 142 | c1 |2 c1 + 153 | c2 |2 c1 −(2) (2)(2) (2) (2)(2) (2)(2) (2) (2)(2) − c0 c2 + c0 c2 c1 − c0 c1 + c0 c1 15c0 + 9c2 −(2) (2)(2) (2) (2)(2) − c2 c1 + c2 c1 9c0 + 15c2 = 0,(3.54)(2)(2)−σ (2) c2 +|(2)c0 |2343 (2) c0(2)(2)(2) +c2 + | c1 |2 − c0 + 153c2 +22(2)+|(2)c2 |2c0247 (2) (2) (2)(2) (2) (2)(2) (2)+c2 − 9 c0 c1 + c0 c1 c1 − 15 c2 c1 +22(2) (2) (2)+c2 c1 c1+(2) (2)c0 c2(2)+(2)9 (2) c2 − c0 += 0,22(2) (2) c0 c2(2)(2)| c0 |2 + | c1 |2 + | c2 |2 = 1.Çäåñü(3.55)(3.56)(2)σ (2) = 128(−4πE1 + 5 ln 2 + γ).Ïåðåéäåì ê ðåøåíèþ ñèñòåìû (3.53) (3.56).
( Äëÿ óïðîùåíèÿîáîçíà÷åíèé èíäåêñ 2 ñâåðõó ó(2)(2)(2)c0 , c1 , c2 , σ (2)áóäåì íèæå îïóñ-êàòü.) Âíà÷àëå íàéäåì âåùåñòâåííûå ðåøåíèÿ. Åñëèc0 , c1 , c2 ∈ R,258òî ñèñòåìà (3.53) (3.56) ïðèíèìàåò âèä−σc0 + c203 c2 325247c0 + c2 + c21 123c0 − 19c2 + c22c0 += 0,2222c1 (−σ + 123c20 + 142c21 + 123c22 − 38c0 c2 ) = 0,(3.57)c0 325 247 3−σc2 + c20+c2 + c21 − 19c0 + 123c2 + c22 c0 +c2 = 0,2222c20 + c21 + c22 = 1.Ó÷èòûâàÿ (3.57), ïðèc1 = 0ïîëó÷àåì ñèñòåìó4139 c20 79 2 − σ + 123 + + c2 c0 + − 19 + c20 + c22 c2 = 0,2222(3.58)39 2 41 2 79 2 c22 − 19 + c0 + c2 c0 + − σ + 123 + c0 +c2 = 0,2222(3.59)c20 + c22 = 1,à ïðèc1 6= 0ïðèõîäèì ê óðàâíåíèÿì (3.58), (3.59),−σ + 142 − 19(c0 + c2 )2 = 0,(3.61)c21 = 1 − c20 − c22 .(3.62)Ðàññìîòðèì ñëó÷àé, êîãäàèñêëþ÷àÿc0(3.60)c1 = 0.Îáîçíà÷èìx = c22 .Òîãäà,èç (3.58) (3.60), èìååì:σ 2 − 286σ − 1520x2 + 1520x + 20068 = 0,σ 2 (x−1)−σ(x−1)(78x+247)+1522x3 +8109x2 +(3.63)1124361009x−= 0.24(3.64)Èç óðàâíåíèé (3.63), (3.64) âûòåêàåò, ÷òîx−119263 − 78(x − 1)σ + 3042x2 + 6590x −= 0.22(3.65)259Åñëèx = 1/2,òî èç óðàâíåíèÿ (3.63) íàõîäèì(2)(2)σ1 = 142, σ2 = 144.(3.66)Ñîîòâåòñòâóþùèå êîýôôèöèåíòû â ôîðìóëå (3.46) èìåþò âèä1(2)c0,1 = √ ,2(2)c1,1 = 0,1(2)c0,2 = √ ,2Åñëè æåx 6= 1/2,(2)c1,2 = 0,òî âûðàæàÿσ1(2)c2,1 = − √ ,21(2)c2,2 = √ .2(3.67)èç (3.65) è ïîäñòàâëÿÿ åãî â(3.63), ïîëó÷àåì óðàâíåíèåx4 − 4x3 +15971 2 11411x −x+= 0.30425072704Îíî ñâîäèòñÿ ê äâóì êâàäðàòíûì óðàâíåíèÿì:(x − 3/2)2 = 0èx2 − x +Òàê êàêx ∈ [0, 1],(3.68)1= 0.6084(3.69)òî óðàâíåíèå (3.68) ðåøåíèé íå èìååò.
 ñëó÷àåóðàâíåíèÿ (3.69) íàõîäèì êîðíèx1 =1√ ,78(39 + 4 95)x2 = 1 −1√ .78(39 + 4 95)Îíè îòâå÷àþò çíà÷åíèþ(2)σ0 = 123 +19.39(3.70)ÄîêàçàíàËåììà 3.4.σ èìååò âèäÑèñòåìà(3.66)(3.58)(3.60)èëè(3.70).ðàçðåøèìà ëèøü â ñëó÷àå, êîãäà260Ïåðåéäåì ê èçó÷åíèþ óðàâíåíèé (3.58), (3.59), (3.61), (3.62),êîòîðûå âîçíèêàþò ïðèc1 6= 0.Èñêëþ÷àÿ èç ýòîé ñèñòåìûσèc21 ,íàõîäèì, ÷òî− 19 +117 2 4139 39 2c0 + 38c0 c2 +c2 c0 + − 19 + c20 + c22 c2 = 0,2222(3.71)39 2 41 2 117 239 c0 + c2 c0 + − 19 +c0 + 38c0 c2 + c22 c2 = 0. (3.72)2222c0 = c2 = 0, òî èç (3.61), (3.62) ñëåäóåò, ÷òî c1 = 1, à σ = 142.æå c0 c2 6= 0, òî óñëîâèåì ðàçðåøèìîñòè (3.71), (3.72) áóäåò− 19 +ÅñëèÅñëèðàâåíñòâî− 19 +117 239 2117 2 39 c0 + 38c0 c2 +c2 − 19 +c0 + 38c0 c2 + c22 −2222− − 19 +39 2 41 2 39 41c0 + c2 − 19 + c20 + c22 = 0.2222Âñëåäñòâèå ñèììåòðèè óðàâíåíèé (3.71), (3.72) îíî ìîæåò áûòü çà-(c0 + c2 )2 [38 − 39(c0 + c2 )2 ] = 0.Ïóñòü c0 + c2 = 0.