GL_12_Ароматика (1125820), страница 2
Текст из файла (страница 2)
Рассмотрим, насколько применимо правило Хюккеля для широкого набора циклических сопряженных полиенов, для которых специально был введен термин «аннулены» (anula (лат.) - кольцо). Этой проблеме посвящен следующий раздел данной главы.
12.3. АННУЛЕНЫ
Термин «аннулен» был введен для названия полностью сопряженных моноциклических полиенов. Размер цикла аннулена обозначается цифрой в начале названия. В соответствии с этой номенклатурой циклобутадиен представляет собой [4]-аннулен, бензол - [6]-аннулен, а циклооктатетраен - [8]-аннулен. Свойства бензола (гл. 13) и неплоского циклооктатетраена всесторонне изучены.
Первый простейший аннулен - циклобутадиен - получен сравнительно недавно. Первоначально был синтезирован очень стабильный -комплекс (гл. 27, ч. 3) циклобутадиенилжелезотрикарбонил (Р. Петтит, 1964). Этот комплекс был получен при взаимодействии цис-3,4-дихлорциклобутена с избытком нонакарбонила железа:
При окислительном расщеплении этого комплекса нитратом церия (IV) или тетраацетатом свинца в присутствии диeнофилов были выделены аддукты диенофилов с циклобутадиеном. В качестве диенофилов использовались эфиры малеиновой и фумаровой кислот, этилпропиолат и другие активные диенофилы. Ад-дукты с диметилфумаратом и диметилмалеатом образуются стерeоспецифично, что совершенно определенно указывает на образование циклического 1,3-диена в качестве промежуточного продукта при окислении циклобутадиенжелезотрикарбонила. Таким интермедиатом может быть только сам циклобутадиен:
В отсутствие диенофильных ловушек циклобутадиен чрезвычайно легко димеризуется в своеобразной реакции Дильса-Альдeра с образованием смеси син- и анти-изомеров трицикло[4.2.0.02,5]октадиена:
Все эти данные свидетельствовали об образовании циклобутадиена в качестве интермедиата, но не давали никакой информации о его строении и времени жизни.
В индивидуальном виде циклобутадиен был идентифицирован в 1972 г. в результате низкотемпературного фотолиза -лак-тона 2-гидроксициклобутенкарбоновой кислоты (-фотопирона) в твердой аргонной матрице:
Впоследствии было реализовано еще несколько удачных попыток фиксации циклобутадиена в качестве индивидуальной дискретной частицы при низкотемпературном фотолизе в твердых матрицах, например:
При -260 oС получены спектральные характеристики [4]-аннулена. Циклобутадиен стабилен в инертной атмосфере только ниже -250 °С, а уже при -240 oС происходит описанная выше димеризация. Некоторые производные циклобутадиена немного более устойчивы.
Квадратная форма циклобутадиена нестабильна из-за того, что такая молекула представляет собой бирадикал (рис. 12.2), т.е. триплет, в котором вследствие параллельности спинов -электроны не могут разместиться так, чтобы обеспечить наилучшее связывание. Эти электроны как бы «расталкивают» молекулу, заставляя ее деформироваться. Возникает ситуация для проявления эффекта Яна-Теллера, согласно которому молекула должна деформироваться так, чтобы вырождение орбиталей исчезло. Например, вырождение снимется, если горизонтальные расстояния между атомами углерода увеличить, а вертикальные уменьшить, как показано на приведенной схеме:
В «растянутом» циклобутадиене орбиталь уйдет вниз, так как при деформации увеличиваются связывающие взаимодействия (по вертикальным связям) и уменьшаются антисвязывающие взаимодействия (по горизонтальным связям), а орбиталь повысит свою энергию из-за уменьшения связывания и увеличения антисвязывания (см. приведенную схему). В результате энергетическая щель между ВЗМО и НСМО увеличится, что приведет к увеличению стабильности прямоугольной молекулы по сравнению с квадратной.
Метиловый эфир три-трет-бутилциклобутадиенкарбоновой кислоты (IV) устойчив при -78 оС в отсутствие кислорода. Согласно данным рентгеноструктурного анализа, цикл в этом соединении представляет собой прямоугольник с двумя длинными и двумя короткими связями:
Циклооктатетраен, т.е. [8]-аннулен, в настоящее время получают по методу Реппе (1943) циклотетрамеризацией ацетилена в ТГФ в присутствии ацетилацетоната никеля (гл. 6, ч. I):
Аннулены с большим размером цикла были неизвестны вплоть до 1960 г. За последние тридцать лет большинство из них синтезированы и подробно изучены главным образом благодаря работам Ф. Зондхеймера, Э. Фогеля, Г. Рота и Г. Шредера. Первый макроциклический |18]-аннулен был получен Ф. Зондхеймером в результате следующей цепи превращений. При окислительной олигомеризации гексадиина-1,5 по Глязеру-Эглинтону (гл. 6, ч. 1) действием ацетата меди в пиридине в условиях высокого разбавления был получен тримерный циклический восемнадцатичленный гексаин наряду с тетрамером, пентамером и т.д. Тримерный циклический гексаин, циклооктадекагексаин-1,3,7,9,13,15, при нагревании с трет-бутилатом калия в третичном бутиловом спирте претерпевает прототропную изомеризацию в полностью сопряженный гексаентриин. Последний при гидрировании над катализатором Линдлара превращается в [18]-аннулен:
Этот аннулен содержит 18 -электронов, т.е. удовлетворяет правилу Хюккеля и является истинным ароматическим углеводородом. [18]-Аннулен кирпично-красного цвета устойчив до 130 oС в растворе в ДМФА, может храниться на свету и на воздухе в течение дпительного времени. Аналогичным образом были получены многие другие аннулены, содержащие четное число атомов углерода: от С14Н14 до С30Н30 включительно.
[10]-Аннулен, согласно правилу Хюккеля, должен быть ароматичен, если бы он был плоский. Все изомерные циклодекапентаены имеют значительное напряжение, которое препятствует образованию плоской конформации. Даже в наиболее стабильном из них транс-,цис-,транс,цис-,цис-изомере с минимальным угловым напряжением имеет место сильное отталкивание между внутренними атомами водорода, что делает его неплоским:
Другой изомерный [10]-аннулен с полной цис-конфигурацией еще более дестабилизирован угловым напряжением. По этой причине ни один из изомерных [10]-аннуленов не является ароматическим углеводородом. Отсутствие ароматичности является следствием неплоской структуры, а не отклонения от правила Хюккеля. Если в одном из геометрических изомеров |10]-аннулена заменить два пространственно сближенных атома водорода на метиленовую группу, то в 1,6-метано [10]-аннулене пространственные препятствия будут устранены. Такие аннулены называются мостиковыми. Мостиковый 1,6-метано [10]-аннулен был получен Фогелем с помощью следующей последовательности превращений:
К изотетралину, получаемому восстановлением нафталина по Берчу (см. последний раздел этой главы), присоединяют по центральной двойной связи дихлоркарбен, генерируемый из хлороформа и трет-бутилата калия. Дихлорпроизводное далее восстанавливают натрием в жидком аммиаке. Присоединение брома по кратным связям приводит к теграбромиду, из которого при дегидробромировании под действием спиртового раствора КОН получается 1,6-метано [10]-аннулен. По своим физическим и химическим свойствам мостиковый 1,6-метано [10]-аннулен является типичным ароматическим углеводородом.
[14]-Аннулен, подобно [10]-аннулену, непланарен и находится в виде равновесной смеси двух конфигурационных изомеров относительно одной двойной связи. Мостиковые производные [14]-аннулена, содержащие два син-метиленовых мостика соответственно в положениях 1,6 и 8,13, относятся к числу ароматических соединений:
[12]-Аннулен, как и следовало ожидать, оказался неароматическим соединением, которое относительно стабильно только ниже -70 °С, а при -40 оС перегруппировывается в цис-бицикло[б.4.0]-додекапентаен, который затем расщепляется до бензола:
Шестнадцатичленный [16]-аннулен не проявляет ароматических свойств. Этот полиеновый углеводород легкодоступен и в настоящее время получается при фотолизе цис-димера циклооктатетраена:
Длины С=С и С-С-связей в [16]-аннулене резко различаются, что наряду с паратропией (см. 13.8.3) совершенно отчетливо указывает на его неароматический характер.
Таким образом, для большого числа аннуленов совершенно отчетливо прослеживается различие между ароматическими [4n+2]-аннуленами и неароматическими [4n]-аннуленами. Наибольшее различие между этими двумя группами аннуленов наблюдается при малых значениях n=1;2. Квантово-химические расчеты показывают, что стабилизация ароматических [4n+2]-аннуленов постепенно снижается, по мере того как растет размер цикла, т.е. с ростом величины п. Правило Хюккеля еще выполняется в известной мере для [22]-аннулена, но оно, по-видимому, окажется уже неприемлемым для [26]- и [30]-аннуленов. Следовательно, существует некоторый предел ароматической стабилизации для макроциклических, полностью сопряженных 4n+2 полиенов, и термин «ароматический» имеет ограниченную область применения. Это можно понять, если вернуться к исходной модели круга Фроста. Для многоугольника с большим размером цикла, вписанного в круг, резко снижается разница в уровнях энергии для верхних связывающих и нижних разрыхляющих орбиталей, и, следовательно, постепенно теряется само различие между связывающими и разрыхляющими орбиталями.
Исходя из этих и других соображений, можно дать наиболее общую современную формулировку понятия ароматичности:
«Ненасыщенная циклическая или полициклическая диатропная молекула или ион может рассматриваться как ароматическая, если все атомы цикла входят в полностью сопряженную систему таким образом, что в основном состоянии все -электроны располагаются только на связывающих молекулярных орбиталях аннулярной (замкнутой) оболочки».
12.4. АРОМАТИЧЕСКИЕ ИОНЫ
Правило Хюккеля, применимо не только для циклических, полностью сопряженных полиенов, но и для плоских циклических ионов, содержащих, как и полиены, (4п+2)-электронов. Оно правильно предсказывает ароматический характер катиона циклопропенилия, двухзарядного катиона циклобутадиtнилия (п = 0), аниона циклопентадиена и катиона циклогептатриена (n = 1) дианиона циклооктатетраена, аниона циклононатетраена (n = 2) и т.д. На рис. 12.3 приведены диаграммы энергии -орбиталей для некоторых из этих ионов на основании круга Фроста.
Все эти ионы ароматичны и удовлетворяют правилу Хюккеля. Все связывающие -орбитали в них заполнены, а все разрыхляющие свободны. Заполнение связывающих орбиталей приводит к понижению энергии системы относительно исходных атомных орбиталeй. Действительно, все три заряженные частицы характеризуются положительными значениями энергии делокализации, что указывает на стабилизацию системы.
Рис. 12.3. Диаграммы энергии молекулярных -орбиталей для ароматических ионов
Производные катиона циклопропенилия были получены при ионизации галоген-, циан- и алкоксизамещенных циклопропенов с помощью кислот Льюиса или Бренстеда. Первое производное - катион трифенилциклопропенилия - было получено Р.Бреслоу в 1957 г. в результате присоединения фенилцианкарбена к дифенилацетилену с последующим отщеплением цианид-иона с помощью ВF3: