GL_11_Спирты (1125819), страница 8
Текст из файла (страница 8)
11.2.2. СВОЙСТВА ДИОЛОВ
Для диолов характерны те же реакции, что и для одноатомных спиртов. Кроме того 1,2-диолы проявляют некоторые специфические свойства, обусловленные наличием двух гидроксильных групп. Они будут рассмотрены в этом разделе.
11.2.2.а. ДЕГИДРАТАЦИЯ
При дегидратации диолов возможно протекание различных реакций, которые часто приводят к образованию сложной смеси продуктов, состав которой зависит от структуры диола, природы дегидратирующего агента и условий реакции. Обсуждение будет сосредоточено главным образом на тех реакциях, механизм которых надежно установлен и которые играют заметную роль в органическом синтезе. Дегидратация 1,2-диолов может осуществляться по трем принципиально различным направлениям: 1) дегидратация до диенов; 2) дегидратация, сопровождаемая перегруппировкой, - так называемая «пинаколиновая перегруппировка»; 3) образование циклических эфиров и эпоксидов. Все эти реакции катализируются кислотными агентами, поэтому в общем случае все три направления конкурируют друг с другом, т.е. дегидратация диолов относится к неселективным процессам. Тем не менее иногда удается подобрать условия таким образом, чтобы одно из них стало преобладающим. Дегидратация двутретичных или двувторичных 1,2-диолов до 1,3-диенов легче всего осуществляется при нагревании с 48%-й бромистоводородной кислотой:
или на окиси алюминия при 450-470 oС:
В отличие от этого дегидратация дитретичных, дивторичных и даже первично-третичных 1,2-диолов, катализируемая серной кислотой, n-толуолсульфокислотой, кислотами Льюиса (ВF3 и др.), сопровождается 1,2-миграцией алкильной, арильной группы или гидрид-иона. Продуктами перегруппировки являются кетоны или альдегиды. Эта перегруппировка была открыта Р.Фиттигом в 1859 г. при дегидратации пинакона в пинаколин с помощью концентрированной серной кислоты, поэтому она получила название пинаколиновой перегруппировки:.
Некоторые наиболее типичные примеры пинаколиновой перегруппировки 1,2-диолов приведены в табл. 11.4.
Таблица 11.4
Пинаколиновая перегруппировка замещенных 1,2-диолов
Наибольшее значение для органического синтеза приобрела перегруппировка дитретичных и дивторичных 1,2-диолов, приводящая к кетонам, которая характеризуется высоким выходом карбонильных соединений. В табл. 11.4 следует особо выделить пинаколиновую перегруппировку циклических диолов с образованием спироциклических кетонов. Один из наиболее простых способов создания спироциклических соединений заключается в восстановительной димеризации циклоалканонов с последующей пинаколиновой перегруппировкой:
Механизм пинаколиновой перегруппировки очень подробно исследован. В простейшем случае в качестве промежуточной частицы при дегидратации 1,2-диола образуется карбокатион, в котором происходит 1,2-миграция алкильной или арильной группы с образованием протонированной формы карбонильного соединения. Перегруппировка завершается отщеплением протона из оксониевого катиона:
Такой механизм находится в соответствии с экспериментальными данными, согласно которым изотопный обмен кислорода для пинакона в серной кислоте, содержащей Н2О, происходит в три раза быстрее, чем перегруппировка. Специальными опытами было установлено, что конфигурация мигрирующей группы полностью сохраняется в продукте перегруппировки:
Это указывает на внутримолекулярный характер 1,2-миграции алкильной группы. Во многих случаях пинаколиновая перегруппировка, по-видимому, происходит как строго согласованный процесс без образования карбокатиона в качестве промежуточной частицы. В согласованном процессе отщепление воды происходит из протонированной формы диола с анхимерным содействием мигрирующей группы. Легко заметить, что такой механизм не требует образования карбокатиона как необходимого условия для 1,2-миграции алкильной или арильной группы:
Для тетраарилзамещенных 1,2-диолов был установлен механизм перегруппировки, в котором в качестве промежуточного продукта получается эпоксид:
Таким образом, в зависимости от структурных факторов механизм пинаколиновой перегруппировки 1,2-диолов может быть различным. Орбитальный контроль пинаколиновой и других родственных ей перегруппировок будет рассмотрен в гл. 26 (ч. 4).
Этиленгликоль и другие первично-вторичные 1,2-диолы общей формулы R-СН(ОН)-СН2ОН при нагреваниия с концентрированной серной или 85%-й фосфорной кислотой или п-толуолсульфокислотой дают 1,4-диоксаны - циклические простые эфиры с двумя атомами кислорода. Циклодегидратация 1,4-диолов и 1,5-диолов в тех же условиях служит наиболее важным способом получения производных тетрагидрофурана и тетрагидропирана соответственно:
Этот метод непригоден для получения оксиранов из 1,2-диолов, оксетанов из 1,3-диолов и циклических простых эфиров с числом звеньев цикла более шести из -диолов.
Другой общий способ получения циклических эфиров состоит в катализируемом основанием замыкании цикла, исходя из моносульфоната диола:
11.2.2.б. ОКИСЛИТЕЛЬНОЕ РАСЩЕПЛЕНИЕ 1,2-ДИОЛОВ
В главе 5 рассматривалось несколько альтернативных вариантов окислительной деструкции алкенов в результате озонолиза. Алкены могут также подвергаться окислительной деструкции в результате син- или анти-гидроксилирования до 1,2-диолов и последующего окислительного расщепления вицинальных диолов. Существуют два классических метода окислительного расщепления 1,2-диолов и полиолов с помощью парайодной кислоты H5IO6 и ее солей (Л.Малапрад, 1928 г.), а также тетраацетатом свинца Рb(ООССН3)4 (Р.Криге, 1931 г.):
Тетраацетат свинца получают при взаимодействии сурика Рb3O4 и уксусного ангидрида в уксусной кислоте:
Наилучшие результаты достигаются при использовании в качестве мягкого окислителя парайодной кислоты, но оба метода окисления 1,2-диолов и полиолов удачно дополняют друг друга. Для окисления 1,2-диолов, растворимых в воде или в бинарной системе вода - ТГФ, вода - диоксан, используют Н5IO6 и ее соли, для окисления нерастворимых в воде диолов - тетраацетат свинца в бензоле или в уксусной кислоте. В обоих вариантах окислительной деструкции 1,2-диолов в качестве интермедиата образуются циклические эфиры йодной или свинцовой кислоты. Циклические эфиры затем подвергаются окислительно-восстановительному элиминированию с образованием карбонильных соединений и йодат-иона или ацетата свинца соответственно:
Образование циклических сложных эфиров объясняет более быстрое окисление цис-изомеров циклических диолов по сравнению с транс-изомерами, а также более быстрое расщепление трео-изомеров ациклических диолов по сравнению с эритро-формой. Пространственные факторы, которые затрудняют образование циклического интермедиата, уменьшают и скорость окислительной деструкции. Однако тетраацетат свинца окисляет также и 1,2-диолы, не способные к образованию циклического эфира из-за большого расстояния между обеими гидроксильными группами. Так, например, транс-9,10-дигидроксидекалин окисляется тетраацетатом до циклодекадиона-1,6, хотя окисление транс-изомера протекает в 300 раз медленнее, чем цис-изомера, который может давать циклический интермедиат:
В главе 5 (ч. 1) были описаны две разновидности окислительной деструкции диолов. В обоих случаях окислению подвергается алкен, а окислительным агентом служит пара KMnO4—NaIO4 или пара OsO4—NaIO4. Перманганат калия или оксид осмия (VIII) окисляют алкен до цис-1,2-диола, а перйодат натрия расщепляет диол до карбонильных соединений и регенерирует ионы Мn (VII) или Os (VIII).
Другие реагенты для окислительного расщепления 1,2-диолов по селективности и доступности уступают йодной кислоте и тетраацетату свинца. Это относится к солям церия (IV), ванадия (V), фенилйодозоацетату C6H5I(OCOCH3)2. В некоторых случаях для окисления диолов в нейтральной среде применяют пероксид никеля NiO2 и оксид марганца (IV):
Интересным и своеобразным дополнением к реакциям окисления является реакция дегидроксилирования 1,2-диолов по Кори—Винтеру (гл. 10). Диол превращают в циклический тиокарбонат 1,3-диоксолан-З-тион с помощью тиокарбонилдиимидазола с последующим специфическим син-элиминированием СО2 под действием триалкилфосфита или триалкилфосфина:
11.3. ПРОСТЫЕ ЭФИРЫ
11.3.1. НОМЕНКЛАТУРА ПРОСТЫХ ЭФИРОВ
Согласно тривиальной номенклатуре, простые эфиры называют по радикалам, связанным с атомом кислорода, добавляя слово «эфир»:
(СH3)2CH-OC2H5 изопропилэтиловый эфир | (CH3)2CH-O-CH(CH3)2 диизопропиловый эфир |
CH3-O-СH2CH2CH2CH3 н-бутилметиловый эфир |
По номенклатуре ИЮПАК эфиры рассматривают как алкоксиалканы. Корень названия определяет наиболее длинная алкильная группа:
СH3OCH2CH2OCH3 1,2-диметоксиэтан | 3-пропоксигексан |
1-этокси-4,4-диметилпентан |
Простые эфиры имеют ту же геометрию, что и Н2О. Валентный угол С-О-С соответствует 112° для СН3ОСН3, что близко к тетраэдрическому углу и указывает на sp3-характер гибридизации атома кислорода. Простые эфиры относятся к числу малореакционноспособных веществ и стабильны по отношению ко многим реагентам (металлоорганическим соединениям и др.), но они чувствительны по отношению к кислороду и легко образуют взрывчатые гидропероксиды, которые являются причиной взрыва при неосторожном обращении.
11.3.2. ПОЛУЧЕНИЕ ПРОСТЫХ ЭФИРОВ
Существует три общих метода получения простых эфиров: межмолекулярная дегидратация спиртов, алкоксимеркурирование алкенов и реакция А.Вильямсона.
11.3.2.а. МЕЖМОЛЕКУЛЯРНАЯ ДЕГИДРАТАЦИЯ СПИРТОВ
Этот наиболее старый способ получения простых эфиров описан ранее в этой главе. Он пригоден для получения симметричных простых эфиров из неразветвленных первичных спиртов:
Третичные спирты в этих условиях образуют алкены в результате внутримолекулярной дегидратации. Метод непригоден для получения смешанных эфиров, за исключением такого случая, когда один спирт третичный, а второй - первичный:
Межмолекулярная дегидратация спиртов имеет крайне ограниченное значение в практике органического синтеза. В промышленности этим способом получают диэтиловый, дибутиловый и ряд других простейших эфиров. Гораздо более важными общими методами синтеза простых эфиров являются алкоксимеркурирование алкенов и реакция Вильямсона.
11.3.2.б. АЛКОКСИМЕРКУРИРОВАНИЕ АЛКЕНОВ
Алкоксимеркурирование алкенов по существу аналогично оксимеркурированию (гл. 5, ч. 1), единственное различие состоит в том, что роль «внешнего» нуклеофильного агента выполняет спирт, который используется в качестве растворителя. Для получения эфиров, содержащих третичную или вторичную алкильную группу в качестве электрофильного агента, целесообразно использовать трифторацетат ртути: