Главная » Просмотр файлов » И.Е. Иродов - Электромагнетизм. Основные законы (7-е издание)

И.Е. Иродов - Электромагнетизм. Основные законы (7-е издание) (1115518), страница 11

Файл №1115518 И.Е. Иродов - Электромагнетизм. Основные законы (7-е издание) (И.Е. Иродов - Электромагнетизм. Основные законы (7-е издание)) 11 страницаИ.Е. Иродов - Электромагнетизм. Основные законы (7-е издание) (1115518) страница 112019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Это связано с тем, что соотношениеА = д((р! - ф2) справедливо только для потенциального поля. В системе же отсчета, связанной с проводящей плоскостью, электрическое поле индуцированных зарядов не потенциально: перемещение заряда q приводит к изменению распределения индуцированных зарядов, и их поле оказывается зависящим от времени.64Глава 22.6. Тонкое проводящее кольцо радиусом R, имеющее заряд д, расположено параллельно проводящей плоскости на расстоянии / отнее.

Найти: 1) поверхностную плотность заряда в точке плоскости, расположенной симметрично относительно кольца; 2) потенциал электрического поля в центре кольца.Решение. Легко догадаться, что в соответствии с методом изображений фиктивный заряд -q долженyRбыть расположен на таком же кольце, но по другую сторону проводящей плоскости (рис. 2.14). Действи>=0тельно, только в этом случае потенциал на средней плоскости междуэтими кольцами равен нулю, т. е.±совпадает с потенциалом проводящей плоскости.

Теперь воспользуемся известными нам формулами.Рис. 2.141. Для нахождения а в точке О необходимо согласно (2.2) найтинапряженность Е поля в этой точке (рис. 2.14). Выражение для Еот одного кольца на оси было получено в примере 1 (см. с. 12). Внашем случае это выражение надо удвоить. В результатест =ql2. Потенциал в центре кольца равен алгебраической сумме потенциалов в этой точке, создаваемых зарядами q и -q:Ф =2.7.

Три разноименных точечных заряда расположены так, как показано на рис. 2.15, а, где ЛОБ —прямой угол, образованный двумяпроводящими полуплоскостями. Модуль каждого заряда равен |д|,расстояния между ними указаны на рисунке. Найти: 1) суммарный заряд, индуцированный на проводящих полуплоскостях; 2) силу, действующую на заряд -q.Решение.

Полуплоскости,образующие угол АО В,уходят в бесконечность,Рис. 2.15Проводник в электростатическом поле65поэтому их потенциал ф = 0. Нетрудно сообразить, что системой, укоторой эквипотенциальные поверхности с ф = 0 совпадают с проводящими полуплоскостями, является та, которая показана нарис. 2.15, б. Поэтому действие зарядов, индуцированных на проводящих полуплоскостях, эквивалентно действию фиктивного точечного заряда -д, помещенного в нижний левый угол пунктирного квадрата.1. Ответ на этот вопрос мы уже получили: -д.2. Сведя систему к четырем точечным зарядам, легко найти и искомую силу как (см. рис.

2.15, б)_ 2-72-12х"4ттб 02q2а2 *2.8. Емкость параллельных проводов. Два длинных прямых провода содинаковым радиусом сечения расположены в воздухе параллельно друг другу. Расстояние между осями проводов в т| раз большерадиуса сечения каждого провода. Найти емкость проводов наединицу их длины, при условии, что Т1 » 1.Решение.

Зарядим мысленно оба провода одинаковыми по модулю, но противоположными по знаку зарядами так, чтобы на единицу длины приходился заряд к. Тогда, по определению, искомаяемкость(1)и все дальнейшее сводится к нахождениюразности потенциалов между проводами.Из рис. 2.16, на котором показаны графики зависимостей потенциалов ф+ и ф_ отположительно и отрицательно заряженных проводов, нетрудно понять, что искомая разность потенциаловU - |АФ+| + |АФ_| = 2 |Дф+| .(2)Напряженность электрического поля, соРис. 2.16здаваемого одним из проводов на расстоянии х от его оси, можно легко найти с помощью теоремы Гаусса:Е = к/2пгох.

ТогдаЬ-а|ЛФ+|=-3947Л2яе 0-Inb-a(3)Глава 266где а — радиус сечения провода; Ъ — расстояние между осямипроводов. Из (1), (2) и (3) следует, чтоздесь учтено, что Ь » а.2.9. Четыре одинаковые металлические пластины расположены в воздухе на одинаковом расстоянии h друг от друга, при12чем наружные пластины соединены между собойпроводником. Площадь каждой пластины S. Найтиемкость этой системы (между точками 1 и 2, рис.2.17).вРешение. Сообщим пластинам 1 и 2 соответственнозаряды q0 и -q0. Под действием возникшего междуэтими пластинами поля рассеяния (краевой эффект)Рис. 2.17произойдет перемещение заряда в замыкающем проводнике, после чего пластина А зарядится отрицательно, а пластина В — положительно. В пространстве между всемипластинами возникает электрическое поле и соответствующее распределение потенциала ф (рис. 2.18).

Заметим, что из симметриисистемы следует, что потенциалы в ее середине, а также на наружных пластинах равны нулю. По определению емкость системы в данном случае(1)С-Яо/и,()Е'€ЕЕ'У'уNИРис. 2.18вXгде U — разность потенциалов между точками 1 и 2, ее и надо найти. Из рис. 2.18видно, что разность потенциалов междусредними пластинами, т. е.

I/, вдвое больше разности потенциалов между крайнейпарой пластин (как слева, так и справа).Это же относится и к напряженностиполя:Е = 2Е'.(2)А так как Е сост,то мы можем утверждать, что в соответствии с(2) заряд q0 на пластине 1 делится на две части: до/3 — на левойстороне пластины 1 и 2qo/3 — на правой стороне. ПоэтомуU = Eh =стЛ/е0= 2qoh/3EOS,и емкость системы (между точками 1 и 2) равнаС = 3z0S/2h.Проводник в электростатическом поле672.10.

Распределение индуцированного заряда. Точечный заряд q находится между двумя большими параллельными проводящимипластинами 1 и 2, отстоящими друг от друга на расстояние /.Найти полные заряды qx и д 2 , наведенные на каждой из пластин,если пластины соединены проводом и заряд q расположен нарасстоянии 1Х от левой пластины 1 (рис. 2.19. а).Решение. Воспользуемся принципом суперпозиции.

Поместиммысленно на плоскости Р где-тоеще такой же заряд q. Ясно, чтоэто удвоит поверхностный зарядна каждой пластине. Если же наповерхности Р равномерно распределить некоторый заряд с поверхностной плотностью а, то4электрическое поле станет простым для расчета (рис. 2.19, б).1 IPPП-<лКЯ=а)CT Uб)Рис. 2.19Пластины соединены проводом,поэтому разность потенциалов между ними равна нулю. ОтсюдаEixh + E2x(l - h) - 0,где Е1х и Е2х — проекции вектора Е на ось X слева и справа отплоскости Р (рис. 2.19, б).С другой стороны, очевидно, чтоа = -(ах + а 2 ),где согласно (2.2) аг = е о £ 1 л 1 = 80£1х и а 2 = ^Егпг^ ^Ъх (знакминус, так как нормаль п 2 противоположна орту оси X).Исключив Е1х и Е2х из этих уравнений, получимАналогичный вид имеют и формулы для искомых зарядов qx иq2 через заряд д.Решение же этой задачи с помощью метода изображений весьмазатруднительно: необходим бесконечный ряд фиктивных зарядов, располагающихся по обе стороны от нашего заряда д, и нахождение поля такой системы оказывается сложной задачей.— Глава 3=Электрическое поле в диэлектрике§ 3.1.

Поляризация диэлектрикаДиэлектрики. Диэлектриками (или изоляторами) называют вещества, практически не проводящие электрического тока.Это значит, что в диэлектриках в отличие, например, от проводников нет зарядов, способных перемещаться на значительные расстояния, создавая ток.При внесении даже нейтрального диэлектрика во внешнееэлектрическое поле обнаруживаются существенные изменениякак в поле, так и в самом диэлектрике; последнее следует хотябы из того, что на диэлектрик начинает действовать сила, увеличивается емкость конденсатора при заполнении его диэлектриком и др.Чтобы понять, почему это происходит, надо прежде всегоучесть, что диэлектрики состоят либо из нейтральных молекул,либо из заряженных ионов, находящихся в узлах кристаллической решетки (ионные кристаллы, например, типа NaCl).

Самиже молекулы могут быть полярными и неполярными. У полярных молекул центр «тяжести» отрицательного заряда сдвинут относительно центра тяжести положительных зарядов, врезультате чего они обладают собственным дипольным моментом р. Неполярные же молекулы собственным дипольным моментом не обладают: у них центры тяжести положительного иотрицательного зарядов совпадают.Поляризация.

Под действием внешнего электрического поляпроисходит поляризация диэлектрика. Это явление заключается в следующем. Если диэлектрик состоит из неполярных молекул, то в пределах каждой молекулы происходит смещение зарядов — положительных по полю, отрицательных против поля.Если же диэлектрик состоит из полярных молекул, то при отсутствии внешнего поля их дипольные моменты ориентирова-69Электрическое поле в диэлектрикены совершенно хаотически (из-за теплового движения).

Поддействием же внешнего поля дипольные моменты ориентируются преимущественно в направлении внешнего поля. Наконец, в диэлектрических кристаллах типа NaCl при включениивнешнего поля все положительные ионы смещаются по полю,отрицательные — против поля*.Таким образом, механизм поляризации связан с конкретным строением диэлектрика. Однако для дальнейшего существенно лишь то, что независимо от механизма поляризации вэтом процессе все положительные заряды смещаются по полю,а отрицательные — против поля. Заметим, что смещения зарядов в обычных условиях весьма малы даже по сравнению с размерами молекул, это связано с тем, что напряженность внешнего поля, действующего на диэлектрик, значительно меньше напряженности внутренних электрических полей в молекулах.Объемные и поверхностные связанные заряды.

В результате поляризации на поверхности диэлектрика, а также, вообщеговоря, и в его объеме появляются нескомпенсированные заряды. Чтобы понять, каким образом возникают эти заряды (особенно объемные), обратимся к следующей модели. Пусть имеется пластина из нейтрального неоднородного диэлектрика(рис. 3.1, а), у которого, например, плотность как-то увеличивается с ростом координаты х. Обозначим р'+ и р_' _ — модулиобъемной плотности положительного и отрицательного зарядовв веществе (эти заряды связаны с ядрами и электронами).£=0АР!|ьс(-а)р;\1\б)Рис. 3.1Существуют ионные кристаллы, поляризованные даже при отсутствии внешнего поля.

Этим же свойством обладают диэлектрики, называемые электретами (они подобны постоянным магнитам).70Глава 3При отсутствии внешнего поля в каждой точке диэлектрикар'+ = р'_ , ибо диэлектрик электрически нейтрален, но в силу неоднородности диэлектрика как р'+, так и рг_ увеличиваются сростом х (рис. 3.1, б). Из этого рисунка видно, что если внешнего поля нет, то оба распределения в точности накладываютсядруг на друга (распределение р'+(х) показано сплошной линией,а распределение р'_(х) — пунктирной).Включение внешнего поля Е приведет к смещению положительных зарядов по полю, отрицательных — против поля, и обараспределения сдвинутся относительно друг друга (рис.

3.1, в).В итоге появятся нескомпенсированные заряды на поверхностидиэлектрика и в его объеме (на нашем рисунке в объеме появился отрицательный нескомпенсированный заряд). Заметим,что изменение направления поля на обратное приведет к изменению знака всех этих зарядов. Нетрудно также видеть, что вслучае пластины из однородного диэлектрика каждое распределение р'+(*) и pL(jc) имело бы П-образную форму, и при их относительном смещении в поле Е возникли бы только поверхностные нескомпенсированные заряды.Нескомпенсированные заряды, появляющиеся в результатеполяризации диэлектрика, называют поляризационными илисвязанными.

Характеристики

Тип файла
PDF-файл
Размер
11,76 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее