Главная » Просмотр файлов » VI.-Гидродинамика

VI.-Гидродинамика (1109684), страница 32

Файл №1109684 VI.-Гидродинамика (Ландау Л.Д., Лифшиц Е.М. - Теоретическая физика в 10 томах) 32 страницаVI.-Гидродинамика (1109684) страница 322019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 32)

Чем меньше масштаб движения, тем ') По английской терминологии — Ггеллцепсу 1осЫпя. ) Фактически речь цдет о тепловой конвекции в ограниченных объемах н о куэттовском движении между двумя коакснальными цилиндрами конечной длины. Теоретические представления о механизме турбулизации пол рапичпого слоя и следа за обтекаемым конечным те.чом в настоящее время еще слабо развиты, несмотря на накопленный значителъный экспериментальный материал. 1бЗ отглнный к!'ТРАКТОР болыпе градиенты скорости в нем и тем сильнее оно тормозится вязкостью.

Есз!и расположить допустимые моды в порядке убывания их масштабов, то опасным может оказаться только некотороо конечное число первых из них; достаточно далекие в этом ряду заведомо окажутся сильно затухающими, т. е. им будут отвечать малые по модулю мультипликаторы.

Это обстоятельство позволяет считать, что выяснение возможных типов потери устойчивости периодическим движением вязкой жидкости может производиться по существу так же, как и анализ устойчивости периодического движения диссипативной дискретной механической системы, описываемой конечным числом переменных (в гидродинамическом аспекте этими переменными могут, например, быть амплитуды компонент разложения поля скоростей в ряд Фурье по координатам). Соответственно этому становится конечномерным и пространство состояний. С математической точки зрения речь идет об исследовании эволюции системы, описываемой уравнениями вида (31.1) х(г) = Р(х), где х(г) вектор в пространстве и величин х! !, х! ~, ..., т!"!, описывающих систему, функция Р зависит от параметра, изменение которого может приводить к изменению характера движения ') . Для диссипативной системы дивергенция вектора х в х-пространстве отрицательна, чем выражается сокращение объемов х-пространства при движении '): с11у х(1) = с11у Р(х) = дРН1 (дхй) ( О.

Вернемся к обсуждению возможных результатов взаимодействия разных периодических движений. Явление синхронизации упрощает движение. Но взаимодействие может разрушить квазипериодичность также и в направлении существенного усложнения картины. До сих пор молчаливо подргйзумевалось! что при потере устойчивости периодическим движением возникает в догюлнение к нему другое периодическое движение. Логически же это вовсе не обязательно. Ограниченность амплитуд пульсаций скорости обеспечивает лишь ограниченность объема пространства состояний, внутри которого располагаются траектории, соответствующие установившемуся режиму течения вязкой жидкости, но как выглядит картина траекторий в этом объеме априори ничего сказать нельзя.

'Траектории могут стремиться к предельному ! ) По математической терминологии функцию Е называют векторным полем системы. Если оно не зависит явно от врел!ени (как в (31Л)), систему называют автономной. ) Напомним, что для гамильтоновой механической системы эта диаергенция равна нулю согласно теореме Пиувилля: компонентами лектора я являются при этом обобщенные координаты о и импульсы р системы. 164 тяга» люп ность гл и! циклу или к незамкнутой намотке на торе (соответственно образам периодического или квазипериодического движений), но могут вести себя и совершенно по-иному сложно и запутанно. Именно эта возможность чрезвычайно существенна для понимания математической природы и выяснения механизма возникновения турбулентности. Представить себе сложное и запутанное поведение траекторий внутри ограниченного объема, куда траектории только входят, можно, если предположить, что все траектории в нем неустойчивы. Среди них могут быть нс только неустойчивые циклы, но и незамкнутые траектории бесконечно блуждающие внутри ограниченной области, не выходя из нее.

Неустойчивость означает, что две сколь угодно близкие точки пространства состояний, передвигаясь в дальнейшем по проходящим через них траекториям, далеко разойдутся; первоначально близкие точки могут относиться и к одной и той же траектории: ввиду ограниченности области незамкнутая траектория может подойти к самой себе сколь угодно близко. Именно такое сложное, нерегулярное поведение траекторий и ассоциируется с турбулентным движением жидкости. Эта картина имеет еще и другой аспект . чувствительная зависимость течения от малого изменения начальных условий.

Если движение устойчиво, то малая неточность в задании начальных условий приведет лишь к аналогичной неточности в определении конечного состояния. Если же движение неустойчиво, то исходная неточность со временем нарастает и дальнейшее состояние системы уже невозможно предвидеть (О.С. Крылов, 1944; М. Вогп, 1952). Притягивающее множество неустойчивых траекторий в пространстве состояний диссипативной системы действительно может существовать (Е. Боге!«х, 1963): его принято называть стохастическим, или стра«и!ым аттроктором ') .

На первый взгляд, требование о неустойчивости всех траекторий, принадлежащих аттрактору, и требование о том, чтобы все соседние траектории при 1 — э ос к нему стремились, кажутся несовместимыми, поскольку неустойчивость означает разбегание траекторий. Это кажущееся противоречие устраняется если учесть., что траектории могут быть неустойчивыми по одним направлениям в пространстве состояний и устойчивыми (т.

е. притягивающими) по другим. В и;мерном пространстве ') В отличие от обычных аттракторов (устойчивые предельные циклы, предельные точки и т. п.); название, атграктора «странный» связано со сложностью его структуры, о которой будет идти речь ниже. В физической литературе термином «странный аттрактор» обозначают и более с!!ожиые притягивающие множества, содержащие помиаю неустойчивых также и устойчивые траектории, но со столь малыми областями притяжения, что ни в физическом, ни в численном экспериментах их нельзя обнаружить.

стглннмй лттелк гон 165 состояний траектории, принадлежащие странному аттрактору, не могут быть неустойчивы по всем (и — 1)-направлениям (одно направление отвечает движению вдоль траектории), так как это означало бы непрерывный рост начального объема в пространстве состояний, что для диссипативной системы невозможно. Следовательно, по одним направлениям соседние траектории стремятся к траекториям аттрактора, а по другим 1ай] неустойчивым —. от них ухо- Г,<с> дят (рис. 1 9). Такис траектории называют седловылги, и именно множество таких траекторий составляет й(91 странный аттрактор.

Странный аттрактор Рнс. 19 может появиться уже после нескольких бифуркаций возникновения новых периодов: даже сколь угодно малая нелинейность может разрушить квазипериодичсский режим (незамкнутая обмотка на торе), создав на торе странный аттрактор ф. ггие11е, Г Тойепя, 1971). Это, однако, не может произойти на второй (начиная с разрушения стационарного режима) бифуркации. При этой бифуркации появляется незамкнутая обмотка па двумерном торе. Учет малой нелинейности не разрушает тора, так что странный аттрактор должен был бы быть расположен на нем. Но на двумерной поверхности невозможно существование притягивающего множества неустойчивых траекторий.

Дело в том, что траектории в пространстве состояний не могут пересекаться друг с другом (или сами с собой); это противоречило бы причинности поведения классических систем; состояние систсмы в каждый момент времени однозначно определяет ее поведение в следующие моменты. На двумерной поверхности невозможность пересечений настолько упорядочивает поток траекторий, что его хаотизация невозможна.

Но уже на третьей бифуркации возникновение странного аттрактора становится возможным (хотя и не обязательным!). Такой аттрактор, приходящий на смену трехчастотпому квази- периодическому режиму, расположен на трехмерном торе (Я. Мегойоиае., П. йие11е, Е. То1сепя, 1978). Принадлежащие странному аттрактору сложные, запутанные траектории расположены в ограниченном обьеме пространства состояний. Классификация возможных типов странных аттракторов., которые могут встретиться в реальных гидродинамических задачах, в настоящее время неизвестна; неясны даже критерии, на которых должна была бы основываться такая классификация.

Существующие знания о структуре странных аттракторов основаны в основном лишь на изучении примеров, возникающих при Седловая ня 166 ткгьь лгпп ность гл 111 компьютерном решении модельных систем обыкновенных дифференциальных уравнений, довольно далеких от реальных гидродинамических уравнений. О структуре странного аттрактора можно, однако, высказать некоторые общие суждения, следующие уже из неустойчивости (седлового типа) траекторий и диссипативпости системы.

Дтя наглядности будем говорить о трехмерном пространстве состояний и представлять себе аттрактор расположенным внутри двумерного тора. Рассмотрим пучок траекторий на пути к аттрактору (ими описываются переходные режимы движения жидкости, ведущие к установлению «стационарной» турбулентности). В попере тном сечении пучка траектории (точнее их следы) заполняют определенную площадь; проследим за изменением величины и формы этой площади вдоль пучка. Учтем, что элемент объема в окрестности седловой траектории в одном из (поперечных) направлений растягивается, а в другом — сжимается; ввиду диссипативности системы сжатие сильнее, чем растяжение — объемы должны уменьшаться.

Характеристики

Тип файла
DJVU-файл
Размер
5,72 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее