Главная » Просмотр файлов » Топологическая классификация интегрируемых гамильтоновых систем на многообразиях вращения в потенциальном поле

Топологическая классификация интегрируемых гамильтоновых систем на многообразиях вращения в потенциальном поле (1105029), страница 7

Файл №1105029 Топологическая классификация интегрируемых гамильтоновых систем на многообразиях вращения в потенциальном поле (Топологическая классификация интегрируемых гамильтоновых систем на многообразиях вращения в потенциальном поле) 7 страницаТопологическая классификация интегрируемых гамильтоновых систем на многообразиях вращения в потенциальном поле (1105029) страница 72019-03-14СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Íàøà äàëüíåéøàÿ öåëü íàó÷èòüñÿ ïî áèôóðêàöèîííîé äèàãðàììå âîññòàíàâëèâàòü áèôóðêàöèîííûé êîìïëåêñ (ñì. îïðåäåëåíèå 22). Íàïîìíèì, ÷òî â ãëàâå 1.4 áûëè îïèñàíû âñåâîçìîæíûå òèïû âçàèìíîãî ðàñïîëîæåíèÿ áèôóðêàöèîííûõ êðèâûõ. Îäíàêî íåêîòîðûåíåóñòîé÷èâûå êîíôèãóðàöèè äóã áèôóðêàöèîííîé äèàãðàììû (ò.å. òå êîíôèãóðàöèè, êîòîðûå ìàëûì øåâåëåíèåì èçìåíÿþò ñâîé òèï) ìû ðàññìàòðèâàòü íå áóäåì.Äëÿ ýòîãî íèæå ìû îïðåäåëèì ñëó÷àé îáùåãî ïîëîæåíèÿ. Ðàññìàòðèâàÿ ñëó÷àé îáùåãî ïîëîæåíèÿ, ìû îòáðàñûâàåì òå ñèòóàöèè, êîãäà áèôóðêàöèîííàÿ äèàãðàììàíåóñòîé÷èâà îòíîñèòåëüíî ìàëûõ øåâåëåíèé.Íàïîìíèì, ÷òî òàêîå áèôóðêàöèîííûé êîìïëåêñ. Îí ÿâëÿåòñÿ îáîáùåíèåì ïîíÿòèÿ áèôóðêàöèîííîé äèàãðàììû.

Çàìåòèì, ÷òî â îáðàçå îòîáðàæåíèÿ ìîìåíòàìîãóò áûòü ðåãóëÿðíûå çíà÷åíèÿ(h, k),êîòîðûì ñîîòâåòñòâóåò áîëåå ÷åì îäíàñâÿçíàÿ êîìïîíåíòà (òîð) èíòåãðàëüíîãî ìíîãîîáðàçèÿMh,k = Φ−1 (h, k). Ýòî ìîæ-íî èíòåðïðåòèðîâàòü ñëåäóþùèì îáðàçîì: íàä òî÷êîé(h, k)èìååòñÿ íåñêîëüêîðàçëè÷íûõ ëèñòîâ îáëàñòè âîçìîæíûõ çíà÷åíèé èíòåãðàëîâ. ßñíî, ÷òî ýòè ëèñòû ìîãóò ñêëåèâàòüñÿ òîëüêî âäîëü áèôóðêàöèîííûõ äóã. Ñîâîêóïíîñòü ñêëååííûõ ëèñòîâ è äóã íàçîâåì áèôóðêàöèîííûì êîìïëåêñîì (ïîäðîáíåå ñì.

â ðàáîòàõÀ.Ò.Ôîìåíêî [2], [3]). Äàäèì òåïåðü ñòðîãîå îïðåäåëåíèå.48Îïðåäåëåíèå 22 (À.Ò.Ôîìåíêî) Òîïîëîãè÷åñêîå ïðîñòðàíñòâî, òî÷êàìè êîòîðîãî ÿâëÿþòñÿ ñâÿçíûå êîìïîíåíòû èíòåãðàëüíûõ ìíîãîîáðàçèéMh,k ,ñ åñòå-ñòâåííîé ôàêòîðòîïîëîãèåé, íàçûâàåòñÿ áèôóðêàöèîííûì êîìïëåêñîì (ò.å. áèôóðêàöèîííûé êîìïëåêñ ïîëó÷àåòñÿ èç ìíîãîîáðàçèÿM4ïðè îòîæäåñòâëåíèè âòî÷êó êàæäîé ñâÿçíîé êîìïîíåíòû èíòåãðàëüíûõ ìíîãîîáðàçèéMh,k ).Äàäèì òåïåðü äðóãîå, áîëåå îáùåå îïðåäåëåíèå áèôóðêàöèîííîãî êîìïëåñà, òàêæåââåäåííîå À.Ò.Ôîìåíêî (ñì.

ðàáîòû À.Ò.Ôîìåíêî [2], [3], à òàêæå ðàáîòó À.Ò.Ôîìåíêîè À.Þ.Êîíÿåâà [16]).Ïóñòü(M 2n , ω) ãëàäêîå ñèìïëåêòè÷åñêîå ìíîãîîáðàçèå,v = sgradH ãëàä-êàÿ âïîëíå èíòåãðèðóåìàÿ ïî Ëèóâèëëþ ãàìèëüòîíîâà ñèñòåìà ñ ôóíêöèîíàëüíîíåçàâèñèìûìè è ïîïàðíî êîììóòèðóþùèìè ïåðâûìè èíòåãðàëàìèÐàññìîòðèì ñëîåíèå Ëèóâèëëÿ äàííîé ñèñòåìû. Òî÷êèëåíòíûìè, åñëèf (x) = f (y)fäëÿ ëþáîãî èíòåãðàëàx, y ∈ M 2nñèñòåìûf1 = H, . . .

, fn .íàçîâåì ýêâèâà-v = sgradH .Òàêèìîáðàçîì, ñëîè ñëîåíèÿ Ëèóâèëëÿ ÿâëÿþòñÿ êëàññàìè îïèñàííîé ýêâèâàëåíòíîñòèòî÷åê ìíîãîîáðàçèÿM 2n .Ðàññìîòðèì ìíîæåñòâîâñåõ ðåãóëÿðíûõ ñëîåâ ñëîåíèÿ âZM 2n . Ìíîæåñòâî Z äîïîëíåíèå ê ìíîæåñòâóçàìêíóòî è ìîæåò áûòü ïðåä-ñòàâëåíî â âèäå îáúåäèíåíèÿ ñëîåâ ðàçìåðíîñòè íå áîëåån.Îïðåäåëåíèå 23 (À.Ò.Ôîìåíêî) Ðàññìîòðèì òîïîëîãè÷åñêîå ïðîñòðàíñòâî C n ,òî÷êàìè êîòîðîãî ÿâëÿþòñÿ:1) ðåãóëÿðíûå òîðû Ëèóâèëëÿ (èç ñëîåíèÿ Ëèóâèëëÿ);2) ñâÿçíûå êîìïîíåíòû ìíîæåñòâàÏîëó÷åííîå ïðîñòðàíñòâîÏðîñòðàíñòâîñòðóêòóðóñòâîCnCnCnZ.íàçûâàåòñÿ áèôóðêàöèîííûì êîìïëåêñîì.ÿâëÿåòñÿ õàóñäîðôîâûì è ïî÷òè âî âñåõ ñâîèõ òî÷êàõ èìååòn-ìåðíîãî ìíîãîîáðàçèÿ.

Ïîýòîìó áåç îãðàíè÷åíèÿ îáùíîñòè ïðîñòðàí-ìîæíî ðàññìàòðèâàòü êàê ñòðàòèôèöèðîâàííîå ìíîãîîáðàçèå ñ îñîáåííî-ñòÿìè.Îòìåòèì, ÷òî åñëè ôóíêöèÿ ÃàìèëüòîíàHíåðåçîíàíñíàÿ (ò.å. ïî÷òè êàæäûéòîð Ëèóâèëëÿ ÿâëÿåòñÿ çàìûêàíèåì ëþáîé èíòåãðàëüíîé òðàåêòîðèè, ïðèíàäëå-49æàùåé ýòîìó òîðó), òî ñòðàòèôèöèðîâàííîå ìíîãîîáðàçèåçàâèñèò îò êîíêðåòíîãî âûáîðà îáðàçóþùèõ ãðóïïûâìåñòî èñõîäíûõ èíòåãðàëîâRn ,Cnñ îñîáåííîñòÿìè íåòî åñòü íå ìåíÿåòñÿ, åñëèf1 , . . .

, fn ìû âîçüìåì íîâûé íàáîð ôóíêöèé g1 , . . . , gn ,êàæäàÿ èç êîòîðûõ ìîæåò áûòü âûðàæåíà ÷åðåç èñõîäíûå ôóíêöèè (ïîäðîáíååñì.ðàáîòó À.Ò.Ôîìåíêî è À.Þ.Êîíÿåâà [16]).Âòîðîå îïðåäåëåíèå áèôóðêàöèîííîãî êîìïëåêñà ÿâëÿåòñÿ áîëåå îáùèì è îòðàæàåò åãî âàæíîå ñâîéñòâî: èíâàðèàíòíîñòü îòíîñèòåëüíî îïèñàííîãî âûøå âûáîðàïåðâûõ èíòåãðàëîâ. Îäíàêî, òàê êàê â íàøåé çàäà÷å ïåðâûå èíòåãðàëû ôèêñèðîâàíû, òî ìû ìîæåì ïîëüçîâàòüñÿ è ïåðâûì îïðåäåëåíèåì áèôóðêàöèîííîãî êîìïëåêñà.Áèôóðêàöèîííûé êîìïëåêñ ÿâëÿåòñÿ óäîáíûì èíñòðóìåíòîì äëÿ èññëåäîâàíèÿ òîïîëîãèè èíòåãðèðóåìûõ ãàìèëüòîíîâûõ ñèñòåì. Ïîíÿòèå áèôóðêàöèîííîãîêîìïëåêñà áûëî èñïîëüçîâàíî â îïóáëèêîâàííûõ ðàáîòàõ ïî èññëåäîâàíèþ èíòåãðèðóåìûõ ãàìèëüòîíîâûõ ñèñòåì, íàïðèìåð, â ðàáîòå À.Þ.Ìîñêâèíà [32], à òàêæåâ ðàáîòå À.Â.Áîëñèíîâà, À.Â.Áîðèñîâà, È.Ñ.Ìàìàåâà [11].Îïðåäåëåíèå 24 Îïèøåì ñëó÷àé îáùåãî ïîëîæåíèÿ, òî åñòü òå âîçìîæíîñòèâçàèìíîãî ðàñïîëîæåíèÿ äóã, êîòîðûå ìû äàëåå áóäåì ðàññìàòðèâàòü:1) ÷èñëî êðèâûõ, èç êîòîðûõ ñîñòîèò áèôóðêàöèîííàÿ äèàãðàììà, êîíå÷íî;2) ÷èñëî òî÷åê âîçâðàòà íà áèôóðêàöèîííûõ êðèâûõ êîíå÷íî;3) òî÷åê, â êîòîðûõ òðàíñâåðñàëüíî ïåðåñåêàþòñÿ è ñàìîïåðåñåêàþòñÿ áèôóðêàöèîííûå êðèâûå, êîíå÷íîå ÷èñëî;4) â ëþáîé òî÷êå íà áèôóðêàöèîííîé äèàãðàììå ìîãóò ïåðåñåêàòüñÿ òîëüêî äâå áèôóðêàöèîííûå äóãè, ïðè÷åì ïåðåñå÷åíèå òðàíñâåðñàëüíî (ñì.ëåììó 17íèæå);5) çàïðåùåíî ïîëíîå èëè ÷àñòè÷íîå íàëîæåíèå áèôóðêàöèîííûõ êðèâûõ.Îòìåòèì, ÷òî ïóíêòû 1) è 2) ñëåäóþò èç òåîðåì ïðåäûäóùèõ ïàðàãðàôîâ. äàëüíåéøåì áóäåì ïðåäïîëàãàòü, ÷òî èññëåäóåìûå íàìè ñèñòåìû ýòî ñèñòåìû îáùåãî ïîëîæåíèÿ (îäíàêî, â ñèòóàöèÿõ, êîãäà ýòî íå çàòðóäíÿåò èññëåäîâàíèÿ,50ïóíêòû 4) è 5) ìû çàïðåùàòü íå áóäåì).Äîêàçàòåëüñòâî ñëåäóþùåé ëåììû ÿâëÿåòñÿ äîñòàòî÷íî ïðîñòûì, ïîýòîìó ìûåãî îïóñòèì.Ëåììà 17 Ìàëûì ãëàäêèì èçìåíåíèåì ôóíêöèé f (r) è V (r), çàäàþùèõ ñèñòåìóíà ìíîãîîáðàçèè âðàùåíèÿ, ìîæíî äîáèòüñÿ òîãî, ÷òîáû â êàæäîé òî÷êå íàáèôóðêàöèîííîé äèàãðàììå òðàíñâåðñàëüíî ïåðåñåêàëèñü èëè ñàìîïåðåñåêàëèñü íåáîëåå, ÷åì äâå áèôóðêàöèîííûå äóãè.Èññëåäóåì ïîäðîáíåå ïóíêò 5).

Åñëè íà áèôóðêàöèîííîé äèàãðàììå âîçíèêàåò íàëîæåíèå äâóõ äâóã, òî â ïðîîáðàçå òî÷åê, ãäå âîçíèêàåò íàëîæåíèå, ìîæåò ïðîèñõîäèòü äâå âåùè: ëèáî ïðîèñõîäèò óäâîåíèå àòîìà (íàïðèìåð, â òî÷êàõ, ãäåíàêëàäûâàþòñÿ äðóã íà äðóãà äâå äóãè òèïàB,â ïðîîáðàçå ìû èìååì àòîì2B ),ëèáî âîçíèêàåò áîëåå ñëîæíàÿ îñîáåííîñòü îíà íàçûâàåòñÿ âèëêîé (cì. êíèãó À.Â.Áîëñèíîâà, À.Ò.Ôîìåíêî [1]). Òî åñòü â îáùåì ñëó÷àå ïî áèôóðêàöèîííîéäèàãðàììå ñ ÷àñòè÷íûì íàëîæåíèåì äâóõ äóã íåâîçìîæíî îïðåäåëèòü, êàê óñòðîåí ïðîîáðàç íàêëàäûâàþùèõñÿ äðóã íà äðóãà ó÷àñòêîâ êðèâûõ.

Îäíàêî â ñèñòåìàõíà ìíîãîîáðàçèÿõ âðàùåíèÿ íà ýòîò âîïðîñ âñåãäà ìîæíî äàòü îäíîçíà÷íûé îòâåò.Ëåììà 18 Ôàçîâîå ïðîñòðàíñòâî íàòóðàëüíîé ìåõàíè÷åñêîé ñèñòåìû íà ìíîãîîáðàçèè âðàùåíèÿ íå äîïóñêàåò îñîáåííîñòè òèïà âèëêà.Äîêàçàòåëüñòâî.Ýôôåêòèâíûé ïîòåíöèàë ñèñòåìû, èìåþùåé îñîáåííîñòü òèïàâèëêà, ëîêàëüíî âûãëÿäèò è âåäåò ñåáÿ ñëåäóþùèì îáðàçîì: ïðè íåêîòîðîìk = k0ýôôåêòèâíûé ïîòåíöèàë èìååò îäèí ëîêàëüíûé ìèíèìóì. Çàòåì ïðè óâåëè÷åíèèkäîk = k1ýòîò ëîêàëüíûé ìèíèìóì ðàñïàäàåòñÿ â òðè ëîêàëüíûõ ýêñòðåìóìà,èäóùèå â ñëåäóþùåì ïîðÿäêå: ìèíèìóì, ìàêñèìóì è ìèíèìóì, ïðè÷åì çíà÷åíèÿâ ëîêàëüíûõ ìèíèìóìàõ ñîâïàäàþò. Ïðè äàëüíåéøåì óâåëè÷åíèèkîòk1äîk2êàðòèíêà êà÷åñòâåííî îñòàåòñÿ òàêîé æå.Íàïðèìåð, ýòà ñèòóàöèÿ îïèñûâàåòñÿ ôóíêöèåé ñëåäóþùåãî âèäà (ε ïàðàìåòð):f (x) = x2 · (x2 − ε).51Îäíàêî, äëÿ ñèñòåì íà ìíîãîîáðàçèÿõ âðàùåíèÿ òàêàÿ ñèòóàöèÿ íåâîçìîæíà.

Ýôôåêòèâíûé ïîòåíöèàëÒ.å. óðàâíåíèåUk (r)äîëæåí âåñòè ñåáÿ òàê æå, êàê ôóíêöèÿ èç ïðèìåðà.Uk0 (r) = 0:f 3 (r)V 0 (r)= k2f 0 (r)äîëæíî èìåòü îäèí êîðåíü ïðèk = k0 , à, íà÷èíàÿ ñ íåêîòîðîãî k1 > k0 ñðàçó òðèêîðíÿ. Òàêîå íåâîçìîæíî â ñèëó óêàçàííîé çàâèñèìîñòè óðàâíåíèÿ îò ïàðàìåòðàk .Ñëåäñòâèå 3. Åñëè äâå áèôóðêàöèîííûå äóãè äëÿ ñèñòåìû íà ìíîãîîáðàçèèâðàùåíèÿ ÷àñòè÷íî íàêëàäûâàþòñÿ äðóã íà äðóãà, ýòî âñåãäà îçíà÷àåò, ÷òî ÷àñòè÷íî ñîâïàäàþùèå äóãè äàþò â ïðîîáðàçå àòîì2Aèëè2B .Òàêóþ áèôóðêàöèîííóþ äèàãðàììó ìîæíî ïîñòðîèòü ñëåäóþùèì îáðàçîì: ïóñòüïðèr ∈ (r1 , r2 ) íà áèôóðêàöèîííîé äèàãðàììå èìååì äóãó òèïà êëþâ; îïðåäåëèìïðèr ∈ (r3 , r4 )ôóíêöèèf (r)èV (r)òàê, ÷òî ïðèr ∈ (r3 , r∗ ), r∗ < rmin ,òî÷êà âîçâðàòà êëþâà, îïðåäåëåííîãî íà èíòåðâàëåñîâïàäàþò ñ ôóíêöèÿìèäåëèì íà(r1 , r2 ),ôóíêöèèãäåf (r)rminèV (r)f (r) è V (r) íà ïåðâîì óêàçàííîì èíòåðâàëå.

Çàòåì äîîïðå-(r∗ , r4 ) ôóíêöèè f (r) è V (r) òàê, ÷òîáû ôóíöèÿ k(r) èìåëà åäèíñòâåííûéëîêàëüíûé ìèíèìóì íà(r3 , r4 ). Òîãäà ïîëó÷èì áèôóðêàöèîííóþ äóãó òèïà êëþâè áèôóðêàöèîííóþ äèàãðàììó òèïà âèëêà. Èñõîäÿ èç ëåììû, ïðè íàëîæåíèèáèôóðêàöèîííûõ äóã èìååì àòîìÇàìå÷àíèå.2B .Ñèòóàöèÿ, êîãäà íà áèôóðêàöèîííîé äèàãðàììå ñèñòåìû íà ìíî-ãîîáðàçèè âðàùåíèÿ âîçíèêàåò ÷àñòè÷íîå íàëîæåíèå äâóõ äóã, íåóñòîé÷èâàÿ (íàëîæåíèå äóã ìîæíî ïåðåâåñòè â ïåðåñå÷åíèå äóã ìàëûì øåâåëåíèåì ôóíêöèèUk (r)).Îäíàêî, â ýòîì ñëó÷àå ïî áèôóðêàöèîííîé äèàãðàììå ìîæíî îäíîçíà÷íî âîññòàíîâèòü áèôóðêàöèîííûé êîìïëåêñ, ïîýòîìó, êîãäà ýòî íå çàòðóäíÿåò èññëåäîâàíèÿ,ýòîò ñëó÷àé ìû çàïðåùàòü íå áóäåì.Íà ðèñóíêå 15 ïîêàçàí ïðèìåð áèôóðêàöèîííîé äèàãðàììû îáùåãî âèäà.52khÐèñ. 15: ïðèìåð áèôóðêàöèîííîé äèàãðàììû îáùåãî âèäà.1.6Àëãîðèòì ïîñòðîåíèÿ áèôóðêàöèîííîãî êîìïëåêñà èññëåäóåìîé ñèñòåìû×òîáû ïîñòðîèòü áèôóðêàöèîííûé êîìïëåêñ, àíàëèçà òîëüêî áèôóðêàöèîííîé äèàãðàììû íåäîñòàòî÷íî.

Характеристики

Список файлов диссертации

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее