Главная » Просмотр файлов » А.А. Бабырин - Электроника и микроэлектроника

А.А. Бабырин - Электроника и микроэлектроника (1088520), страница 54

Файл №1088520 А.А. Бабырин - Электроника и микроэлектроника (А.А. Бабырин - Электроника и микроэлектроника) 54 страницаА.А. Бабырин - Электроника и микроэлектроника (1088520) страница 542018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 54)

Следовательно, при легировании из парогазовой фазы реализуется модель постоянного источника (см, формулу (5.58) и рис. 5.10). 2. Легнрование нз поверхностных источников. В полупроводниковой технологии используют следующие типы поверхностных источников. Легирование из напыленного металлического слоя проводят при температуре, превышающей температуру плавления предварительно напыленного металла-примеси.

Расплав металла растворяет в себе атомы полупроводника, создавая жидкий раствор-расплав состава с . Наряду с этим. в приповерхностном слое полупроводника в результате вхождения в его решетку атомов металла (донора или акцептора) возникает твердый раствор состава с'. В соответствии с диаграммой плавкости системы металл †полупроводн, при данной температуре устанавливается вполне определенное значение коэффициента распределения примеси К(Т) = с'/с . Условие Т = сопз1 обеспечивает постоянную поверхностную концентрацию с, растворенного в полупроводнике металла-примеси, а именно: се=с.

'=К(Т)с" = соцзы Следовательно, при легировании из напыленного металлического слоя реализуется модель постоянного источника (см, формулу (5.58) и рис. 5.10). Легирование из зпитаксиального слоя происходит за счет управляемой или неконтролируемой диффузии примеси, присутствующей в эпитаксиальном слое, в смежный с ним кристалл. Как правило, толщина слоя превышает диффузионную длину примеси, Хд,ф = ~Ъг, так что в данном случае работает модель полуограниченного источника. В многослойных эпитаксиальных структурах обычно подложка содержит наибольшее количество примесей, которые могут нежелательным образом легировать эпитаксиальные слои. Закономерность легирования для гомоэпитаксиальных структур (в которых материал эпитаксиальных слоев и подложки один и тот же) подчиняется соотношению (5.63), показанному на рис.

5.11, в отличие от гетероэпитаксиальных структур, для которых применимы более 5.У. Приняипы диффузионного легирования полупроводников 269 сложные зависимости (5.66) и (5.67), качественно изображенные на рис. 5.12. Легирование из ловерхиостных окислов в кремниевой технологии выполняют, используя в качестве источников бора В (акцептор) и фосфора Р (донор), соответственно, боросиликатное стекло тВ90з п5109 (БСС) и фосфорно-силикатное стекло тР906 пВЮз (ФСС). Окислы В«Оз и Р«Оь взаимодействуют с кремнием по реакциям 2В90з+ 351- 35109+ 4В и 2Р«06+ 551 - 55109+ 4Р с образованием свободных атомов бора и фосфора, легирующих приповерхностный слой кремния.

Поскольку толщина слоев БСС и ФСС велика по сравнению с диффузионной длиной, Е,ф= = хгЪг, бора и фосфора в кремнии, то к этому случаю применима модель полуограниченного источника в гетероструктуре, описываемая зависимостями (5.66) и (5.67), качественно показанными на рис. 5.12. Легирование из рекристаллизованного и ионна-имллантированного слоев проводят следующим образом. Рекристаллизованный слой образуется на поверхности полупроводника в результате расплавления предварительно напыленного металла или сплава, содержащего легирующую примесь, с последующей рекристаллизацией раствора-расплава, Возникающий на поверхности полупроводника легированный слой достаточно тонкий (измеряемый единицами микрон), и в дальнейшем требуется разгонка примеси в глубь полупроводника.

Операция формирования рекристаллизованного слоя соответствует «вагонке примеси«н Цель вагонки может быть также достигнута применением ионной имплантации, заключающейся во внедрении в кристаллическую решетку полупроводника высокоэнергетических ионов примеси, бомбардирующих его поверхность. Толщина ионноимплантированных слоев определяется средней длиной пробега ионов в твердом теле. Ее величина измеряется десятками и сотнями ангстрем в зависимости от энергии ионов, что на 1 — 2 порядка меньше толщины рекристаллизованных слоев.

Операция вагонки примеси является первым этапом комбинированного процесса легирования. Заключительному этапу разгонки предшествует операция окисления кремния с целью создания на его поверхности окисла 5Юв, моделирующего отражающую границу, которая должна предотвращать диффузию атомов примеси из кристалла. Модель отражающей границы может быть реализована только для тех примесей, коэффициент 270 Гл. 5. Управление диффузионными и кинегпи пескими процессами диффузии которых в двуокиси кремния существенно меньше, чем в кремнии, Ориентировочные отношения этих коэффициентов для основных легируюших примесей в кремнии при 1100'С составляют Рзю,,7Рз, = 2,5 10 4 для бора и Рзю,/Рз, = 1,2 х х 10 2 для фосфора.

Однако не для всех примесей справедливы такие соотношения: например, галлий и алюминий диффундируют в оксиде кремния в 400 — 500 раз быстрее, чем в кремнии, что исключает их практическое использование в качестве легирующих примесей. Таким образом, после окисления поверхности кремния заключительная стадия разгонки примеси реализуется в рамках модели поверхностного источника с отразкающей границей, при этом рекристаллизованный слой соответствует источнику конечной толщины (см. формулу (5.70)). а ионноимплантированный слой — бесконечно тонкому источнику (см.

формулу (5.72) и рис. 5.13). Подведем итог вышеизложенным сведениям. 1. Модель диффузии из постоянного источника, описываемая уравнениями (5.33) и (5.56) — (5.58) (см. рис. 5.10), реализуется при легировании из парогазовой фазы и напыленного металлического слоя.

2. Модель диффузии из полуограниченного источника в гомогенной структуре, описываемая уравнениями (5.33) и (5,61)— (5.63) (см, рис, 5,11), реализуется для процессов взаимного легирования слоев в гомоэпитаксиальных структурах, 3. Модель диффузии из полуограниченного источника в гетерогенной структуре, описываемая уравнениями (5.33), (5,61), (5.62) и (5.64)-(5.67) (см, рис, 5.12), реализуется при легировании из гетероэпитаксиальных слоев и поверхностных окислов. 4.

Модель диффузии из поверхностного источника конечной толшины с отражающей границей, описываемая уравнениями (5.33) н (5.68) — (5.70), реализуется при легировании из рекристаллизованных слоев. 5, Модель диффузии из бесконечно тонкого поверхностного источника с отражающей границей, описываемая уравнениями (5.33), (5.69), (5.71) и (5.72) (см. рис. 5.13), реализуется при легировании из ионно-имплантированных слоев.

Кратко рассмотрим схемы создания диффузионных р — и- переходов на основе модели легирования из постоянного источника, часто реализуемой в полупроводниковой технологии. На рис. 5.14 показаны распределения донорной и акцепторной примесей для трех случаев: а — диффузия акцепторной примеси 5.9. Принципы диффузионного легироаанця полупровог)ников 27! Ло Лл)) ЛА Зуо, Мо,йл1 Л'о, Л'л й Мл, г гл г — злого Лог х О зто-Лглд х О Лго — Л'лй 1Лг чдг ) Лг Ло — Л'л1 О х п1 р и б 6 Лгот Лгл.

Р1 в кристалл с однородной концентрацией Хгзо исходных доноров, б — то же при одновременном испарении исходных доноров из кристалла, в — комбинированная диффузия акцепторной и донорной примесей в однородно легированный полупроводник и-типа. Для сравнения на рис. 5.14 а пунктирными кривыми показан случай легирования из бесконечно тонкого источника с отражающей границей. Точки пересечения кривых на верхних графиках, обозначенные цифрами 1, дают положение р — и- перехода хр, показанное на нижних графиках, изображающих ход разности концентраций )Лгп(ш) — Хл(х). Для вычисления глубины залегания р — и-перехода воспользуемся формулами предыдущего параграфа, Случай 1. Лееирование полупроводника с однородной кониентраг)ией доноров Хпо акчепторной примесью из постоянного источника (сплошные кривые на рис, 5.14 а).

В этом случае применение формулы (5.58) при са = Хла позволяет записать Рис. 5.!4. Картины распределения донорной и акцепторной примесей для трех случаев легирования полупроводника и-типа с однородным распределением Лгро исходных донорных центров. а — легирование акцепторами из постоянного источника (сплошные кривые) и из бесконечно тонкого поверхностного источника с отражающей границей (пунктирные кривые), б — легирование акцепторами из постоянного источника с одновременным испарением исходных доноров, в — комбинированное яегирование акцепторами и донорами из постоянного источника 272 Гл. 5.

Управление диффузионными и кинетическими процессами условие образования р — и;перехода в виде з'?Агхр и, сА) = з1Ав ег1с Д00 2л?Р~7~ где Рл и 1А — коэффициент диффузии и время введения акцепторной примеси. Тогда глубина залегания р — п-перехода равняется .'гр и: 2зо? л, при этом ег)зо — — 1 —, (5.?3) ззне зхЛ где ?А = лсРА1А — длина диффузии акцепторной примеси, а величина зо находится как корень второго уравнения 15.73).

Случай 2. Легирование полупроводника с однородной концентрацией доноров зчгзо акцепторной примесью из бесконечно тонкого поверхностного источника с отражающей границей гпунктирные кривые на рис. 5.14а). В этом случае применение формулы 15.72) позволяет записать условие образования р — и- перехода в виде 2 СС'А Г хи — и звА1хр — и 1А) = Рхр ) = Хгзо л/хРА1А 4Рлбл ~ где ЯА — количество акцепторов на единицу площади, введенных в полупроводник на этапе загонки примеси, Отсюда получаем уравнение для нахождения глубины залегания р — и;перехода: х„и = 4Рлгл1п е Мэо хсскРА сл Из выражения 15.74) следует, что с ростом времени 1А величина х „сначала возрастает, а затем начинает убывать, когда максимум функции Гаусса снижается до значений, близких к величине Хгзо.

Нетрудно найти максимальное удаление р †пперехода от поверхности полупроводника: хийвх 2Р вазах — Я 7,1ивх три АА=Л при этом 1 (ЯА 1~ О 1!7 ЯА 2,?2 хРА ~,Хгзо! Рл Хгзо Случай 3. Легирование полупроводника акцепторной примесью из постоянного источника с одновременным испарением исходной донорной примеси грис. 5.14б). В этом случае применение формул 15.47) и 15.58) при со = ?кггзо и св = = Хл, позволяет записать условие образования р — и-перехода 5.9. Принципы диффузионного легировонин полупроводников 273 в следующем виде Л7А(хр — п »А) = Л7А» сг(с 2,7РА1А = Лггзо егг — = Лргз(хр-п, ~А).

Характеристики

Тип файла
DJVU-файл
Размер
3,09 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6505
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее