22 Фильтрация на основе преобразования Адамара (1044285)
Текст из файла
2
Лекция 22. Фильтрация и преобразование Адамара
Результат любого из рассмотренных выше преобразований рассматривается как спектр исходного сигнала. В этой связи имеется возможность изменить спектр произвольным образом, а затем применить обратное преобразование. Основная проблема заключается в том, что надо рассматривать сигнал целиком. Если сигнал разбивается на части, возможны скачки на стыках при объединении смежных участков. Если сигнал имеет большой размер, то применение к нему преобразования требуются значительные вычислительные ресурсы. Для преобразования Адамара существует альтернативный подход, аналогичный рекуррентной фильтрации.
Аналог фильтра с конечным временем отклика для преобразования Адамара.
Рассмотрим матрицу Адамара . Для строк этой матрицы определена операция поэлементного перемножения строк. По индукции проверяется замкнутость. В результате получаем диадическую группу. На этой группе заданы
характеров:
Каждый характер - столбец матрицы. Характер обладает свойством:
. Характеры ортогональны, и любая функция на группе раскладывается по характерам.
Пусть исходный сигнал задан в точках. Можем считать, что он задан функцией
на строках
. Функция раскладывается по характерам группы:
. В силу симметрии матрицы, это обычное преобразование Адамара, а коэффициенты разложения составляют спектр. Выберем натуральное
, элементы группы
и числа
. Результатом фильтрации исходного сигнала назовем функцию
. Результат фильтрации оценивается с точки зрения изменения спектра. Имеем :
=
Другими словами, числа
(1)
задают передаточную функцию фильтра.
Проектирование фильтра.
Согласно (1), при заданном проектирование фильтра сводится к отысканию по данным
чисел
и элементов группы
таким образом, чтобы (1) выполнялось наилучшим образом. Она переформулируется так: по данным
выбрать
строк матрицы таким образом, чтобы вектор
был приближен линейной комбинацией этих строк наилучшим образом, и найти коэффициенты приближения. Очевидно, что точное выполнение равенства (1) можно гарантировать лишь для
, что не имеет практического значения. В том случае, когда в качестве меры близости выбрана сферическая норма, решение задачи имеет следующий вид.
-
Разложить вектор
по строкам
-
Упорядочить коэффициенты разложения в порядке не возрастания модуля
-
Выбрать первые
коэффициентов из списка и соответствующие номера строк.
Реализация фильтра.
Указанный фильтр имеет простую реализацию. Если строки матрицы занумерованы двоичными векторами, то групповое умножение сводится к с сложению этих векторов по модулю 2. Это удобно, если имеется доступ к двоичной нумерации аргументов.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.