4 Дискретное преобразование Фурье (1044239)
Текст из файла
1
Лекция 4. Дискретное преобразование Фурье (ДПФ)
В данной лекции установим свойства дискретного преобразования Фурье аналогичные свойствам непрерывного преобразования. Как обычно, преобразования типа почленного интегрирования ряда, перестановки порядка суммирования и т.п будут проводится без какого-либо обоснования. Предполагается, что соответствующие функции обладают необходимыми свойствами.
Основное определение:
Формула обращения
Как уже отмечалось, ДПФ является периодической функцией. В дальнейшем при изложении свойств ДПФ будем предполагать, что . В этом случае период ДПФ равен 1. Обратное преобразование получается почленным интегрированием ряда. Если
, то обратное преобразование задается формулой
. Данная формула вытекает из соотношения: интеграл
равен 0 при
и 1 иначе.
Свертка
Свертка двух последовательностей определяется формулой:
Предложение. ДПФ от свертки двух последовательностей равняется произведению из преобразований Фурье, а ДПФ от произведения двух последовательностей есть свертка их преобразований Фурье.
Доказательство. Найдем преобразование от произведения последовательностей. Имеем =
=
.
В силу периодичности подынтегральных функций, получим
.
Найдем ДПФ от свертки. По определению ,
. Перемножая эти ряды и собирая коэффициенты при одинаковых степенях, получим
Отметим очевидные следствия вещественности исходной последовательности: .
Пример вычисления ДПФ
Ранее было подсчитано ДПФ от единичной последовательности. В реальных условиях полагают, что в отрицательные моменты времени сигнал отсутствует. В этой связи интересно найти ДПФ от дискретного аналога функции .
Предложение.
Доказательство. Положим =
. Теперь
Задача 3. Доказать, что
Линейные инвариантные системы.
Рассматриваются последовательности . Очевидным образом определяются сумма последовательностей и произведение на число. В результате сдвига получается новая последовательность
. Дальнейшее работа с последовательностью, полученной в результате дискретизации, заключается в преобразовании с помощью различных устройств.
Система


Определение. Система называется инвариантной, если
для любого
.
Примеры.
-
Точечные системы:
, где
произвольная функция ,- инвариантная система..
-
для произвольного фиксированного
- инвариантная система
-
не будет инвариантной. Действительно, пусть
. Согласно определению
Определение. Система называется линейной инвариантной (ЛИС), если она линейна и инвариантна.
Преобразование в примере 2 осуществляется ЛИС.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.