6 Фильтры первого порядка (1044244)
Текст из файла
2
Лекция 6. Z-преобразование. Фильтры первого порядка
Z-преобразование
Иногда вместо преобразования Фурье используют Z-преобразование. Оно определяется формулой
(1)
В формуле (1) ряд является формальным, если же он сходится, то определяет аналитическую функцию. Для Z -преобразования справедливы аналоги свойств, доказанных для преобразования Фурье. Это же относится и к передаточной функции фильтра. В случае фильтра с бесконечным временем отклика
(2)
Формула (2) удобна в том случае, когда переменная Z может принимать любые значения на комплексной плоскости. Еще раз обратим внимание на то, что в формуле (2) предполагается , что ряд для имеет лишь конечное число ненулевых коэффициентов при положительных степенях. В этом случае мы можем в явной форме получить члены выходной последовательности.
Пример.
Пусть . Будем предполагать, что
Легко видеть, что решением является неограниченная последовательность
. С другой стороны, согласно (2)
Формально возводя ряд в квадрат, получим тот же результат.
Условие устойчивости фильтра сводится к сходимости ряда для при Z=1.
И
w
Под идеальным фильтром понимается фильтр, у которого передаточная функция имеет прямоугольную форму. Покажем, что такой фильтр не является физически реализуемым. Действительно, если , то
, откуда вытекает, что бесконечное число слагаемых отличны от нуля как с отрицательными, так и с положительными индексами. Это означает, что в передаточной функции присутствуют слагаемые, как до момента измерения, так и после. Если бы число слагаемых "после" было бы конечным, то дело свелось бы лишь к временной задержке.
Фильтр первого порядка
Рассмотрим фильтр вида
Это общий вид фильтра первого порядка. Его передаточная функция имеет вид
(3)
Первый вопрос связан с устойчивостью фильтра. Переходя к Z -преобразованию видим, что все сводится к сходимости ряда при Z=1, которая имеет место тогда и только тогда, когда
. В простейшем случае при
передаточная функция фильтра принимает вид
. В зависимости от знака
график модуля имеет вид фильтра низких или высоких частот. (Фильтр низких частот пропускает низкие частоты).
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.