rpd000004653 (1008289)
Текст из файла
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Московский авиационный институт
(национальный исследовательский университет)
УТВЕРЖДАЮ
Проректор по учебной работе
______________Куприков М.Ю.
“____“ ___________20__
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (000004653)
Математика. Численные методы
(указывается наименование дисциплины по учебному плану)
| Направление подготовки | Сервис | |||||
| Квалификация (степень) выпускника | Бакалавр | |||||
| Профиль подготовки | Сервис транспортных средств | |||||
| Форма обучения | заочная | |||||
| (очная, очно-заочная и др.) | ||||||
| Выпускающая кафедра | 104 | |||||
| Обеспечивающая кафедра | 806 | |||||
| Кафедра-разработчик рабочей программы | 806 | |||||
| Семестр | Трудоем-кость, час. | Лек-ций, час. | Практич. занятий, час. | Лаборат. работ, час. | СРС, час. | Экзаменов, час. | Форма промежуточного контроля |
| 4 | 72 | 6 | 4 | 0 | 62 | 0 | Зч |
| Итого | 72 | 6 | 4 | 0 | 62 | 0 |
Москва
2012 г.
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Разделы рабочей программы
-
Цели освоения дисциплины
-
Структура и содержание дисциплины
-
Учебно-методическое и информационное обеспечение дисциплины
-
Материально-техническое обеспечение дисциплины
Приложения к рабочей программе дисциплины
Приложение 1. Аннотация рабочей программы
Приложение 2. Cодержание учебных занятий
Приложение 3. Прикрепленные файлы
Программа составлена в соответствии с требованиями ФГОС ВПО по направлению подготовки 100100 Сервис
Авторы программы :
| Северина Н.С. | _________________________ |
| Заведующий обеспечивающей кафедрой 806 | _________________________ |
Программа одобрена:
| Заведующий выпускающей кафедрой 104 _________________________ | Декан выпускающего факультета 1 _________________________ |
-
ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
Целью освоения дисциплины Математика. Численные методы является достижение следующих результатов образования (РО):
| N | Шифр | Результат освоения |
| 1 | З-6 | Знать фундаментальные разделы математики, необходимые для выполнения работ и проведения исследований в сервисной деятельности, математические методы решения профессиональных задач |
| 2 | У-3 | Уметь применять математические методы при решении профессиональных задач |
| 3 | В-5 | Владеть математическим аппаратом, необходимым для профессиональной деятельности |
| 4 | Умения: практические – разработка алгоритмов решения задач. | |
| 5 | Навыками программирования в современных средах разработки программных приложений; | |
| 6 | Владеть элементами математического и функционального анализа |
Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с ФГОС ВПО и требованиями к результатам освоения основной образовательной программы (ООП))
| N | Шифр | Компетенция |
| 1 | ОК-1 | Способностью владеть культурой мышления, целостной системой научных знаний об окружающем мире, ориентироваться в ценностях бытия, жизни, культуры |
| 2 | ОК-2 | Использовать базовые положения математики, естественных, гуманитарных и экономических наук при решении социальных и профессиональных задач |
-
СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
Общая трудоемкость дисциплины составляет 2 зачетных(ые) единиц(ы), 72 часа(ов).
| Модуль | Раздел | Лекции | Практич. занятия | Лаборат. работы | СРС | Всего часов | Всего с экзаменами и курсовыми |
| Численные методы | Вычислительные методы алгебры | 2 | 2 | 0 | 20 | 24 | 72 |
| Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | 2 | 0 | 22 | 26 | ||
| Теория приближения функций и её приложения | 2 | 0 | 0 | 20 | 22 | ||
| Всего | 6 | 4 | 0 | 62 | 72 | 72 | |
-
Содержание (дидактика) дисциплины
В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.
1. Численные методы решения систем линейных алгебраических уравнений (СЛАУ)
- 1.2. Метод Гаусса решения СЛАУ. LU – разложение матриц. Метод Гаусса с выбором ведущего элемента. Матрица перестановок.
- 1.3. Вычисление обратной матрицы с использованием метода Гаусса.
- 1.4. Метод прогонки решения СЛАУ.
2. Численные методы решения нелинейных уравнений и систем
- 2.1. Нелинейные уравнения. Основные этапы нахождения корней. Метод половинного деления, погрешность.
- 2.2. Метод простых итераций решения нелинейных уравнений, погрешность, геометрический смысл. Достаточное условие сходимости.
- 2.3. Метод Ньютона решения нелинейных уравнений, погрешность, геометрический смысл.
- 2.4. Метод секущих решения нелинейных уравнений, погрешность, геометрический смысл.
3. Методы приближения функций
- 3.1. Общая характеристика задач и методов приближения таблично заданных функций. Единственность интерполяционного полинома.
- 3.2. Интерполяционные полиномы в форме Лагранжа и форме Ньютона. Погрешность.
- 3.7. Метод наименьших квадратов.
-
Лекции
| № п/п | Раздел дисциплины | Объем, часов | Тема лекции | Дидакт. единицы |
| 1 | 1.1.Вычислительные методы алгебры | 2 | Прямые методы решения СЛАУ | 1.2, 1.3, 1.4 |
| 2 | 1.2.Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | Методы решения нелинейных уравнений | 2.1, 2.2, 2.3, 2.4 |
| 3 | 1.3.Теория приближения функций и её приложения | 2 | Методы приближения функций | 3.1, 3.2, 3.7 |
| Итого: | 6 | |||
-
Практические занятия
| № п/п | Раздел дисциплины | Объем, часов | Тема практического занятия | Дидакт. единицы |
| 1 | 1.1.Вычислительные методы алгебры | 2 | Прямые методы решения СЛАУ | 1.3, 1.2, 1.4 |
| 2 | 1.2.Численные методы решения нелинейных уравнений и систем нелинейных уравнений | 2 | Решение нелинейных уравнений | 2.1, 2.4, 2.2 |
| Итого: | 4 | |||
-
Лабораторные работы
| № п/п | Раздел дисциплины | Наименование лабораторной работы | Наименование лаборатории | Объем, часов | Дидакт. единицы |
| Итого: | |||||
-
Типовые задания
| № п/п | Раздел дисциплины | Объем, часов | Наименование типового задания |
| Итого: | |||
-
Курсовые работы и проекты по дисциплине
-
Рубежный контроль
-
Промежуточная аттестация
1. Зачет
Прикрепленные файлы:
Вопросы для подготовки к экзамену/зачету:
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















