Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » Физические основы квантовых вычислений

Физические основы квантовых вычислений, страница 10

PDF-файл Физические основы квантовых вычислений, страница 10 Квантовые вычисления (53252): Книга - 7 семестрФизические основы квантовых вычислений: Квантовые вычисления - PDF, страница 10 (53252) - СтудИзба2019-09-18СтудИзба

Описание файла

PDF-файл из архива "Физические основы квантовых вычислений", который расположен в категории "". Всё это находится в предмете "квантовые вычисления" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 10 страницы из PDF

(2.21)∂t∂q2 ∂p2 ∂pЗдесь для простоты опущены аргументы функции Вигнера.Мы предполагаем, что функция потенциальной энергииможет быть разложена в ряд Тейлора, поэтому:¶ Xµ∞i ∂U (n) (q) in ∂ nU q+=.(2.22)2 ∂pn! 2n ∂pnn=0Разность потенциальных энергий дает чисто мнимую функцию: 2· µ¶µ¶¸i ∂i ∂U q+−U q−=2 ∂p2 ∂p∞XU (2n+1) (q) (−1)n ∂ 2n+1.(2.23)=i(2n + 1)! 4n ∂p2n+1n=02Ряд (2.22) по сути дела представляет собой разложение по степеням ~ (напомним, что в данном параграфе мы положили постояннуюПланка ~ = 1).87Таким образом, уравнение Мойала (2.21) действительно,что соответствует уравнению для наблюдаемой величины.4.3Томографическое распределениеРассмотрим простой пример: одномерный гармоническийосциллятор с массой m = 1, частотой ω = 1 и положимтакже постоянную Планка ~ = 1.

В дальнейшем будем придерживаться (если особо не оговорено) такой системы единиц. Как хорошо известно (см. Гл. 2), волновая функцияосновного состояния есть:ψ0 (x) =1π 1/4e−x2 /2.(3.1)Матрица плотности осциллятора в каком-либо (чистом) состоянии ψ равнаρψ (x, x0 ) = ψ(x)ψ ∗ (x0 ),или ρψ (x, x) = |ψ(x)|2 .(3.2)Формулу (3.2) можно “обратить”, выразив волновую функцию через матрицу плотности:ψ(x) =ρψ (x, x0 ) qρψ (0, 0).ρψ (0, x0 )(3.3)Заметим, что для чистого состояния, которое есть суперпозиция состояний, такой же простой формулы (3.3) не существует: для матрицы плотности принцип суперпозициине выполняется, поскольку она определяется квадратичной связью.

Действительно, пусть есть чистое состояние ввиде суперпозиции:ψ(x) = αψ1 (x) + βψ2 (x),88тогда такому чистому состоянию соответствует матрицаплотностиρψ (x, x0 ) =|α|2 ψ1 (x)ψ1∗ (x0 ) + |β|2 ψ2 (x)ψ2∗ (x0 )++αβ ∗ ψ1 (x)ψ2∗ (x0 ) + α∗ βψ2 (x)ψ1∗ (x0 ).Отсутствие принципа суперпозиции для матрицы плотности вовсе не означает, что матрица плотности не описывает квантовой интерференции чистых состояний: он можетбыть представлен в более сложном виде.Запишем теперь матрицу плотности основного осциллятора, находящегося в основном состоянии:120 2ρ0 (x, x0 ) = √ e−x /2−(x ) /2 .π(3.4)Запишем функцию Вигнера (1.7) одномерного гармонического осциллятора, находящегося в основном состоянии:Zuu22W0 (q, p) = due−ipu ρ0 (q + , q − ) = 2e−q −p .

(3.5)22Функция Вигнера действительна и нормирована:ZdqdpW0 (q, p) = 12πФункция Вигнера позволяет также определить квадрат модуля волновой функции основного состояния как в координатном, так и импульсном представлении:Z1dp2W0 (q, p) = √ e−q = |ψ0 (q)|2 ,(3.6)2ππZ1dq2W0 (q, p) = √ e−p = |ψ0 (p)|2 .(3.7)2ππИными словами, интегрируя функцию Вигнера, можно получить функцию распределения по импульсу или координате.

Таким же свойством обладает совместная функция89распределения вероятностей в фазовом пространстве классического осциллятора. Поскольку Вигнер использовал преобразование Фурье, имеет место обратное преобразованиеот функции Вигнера к матрице плотности:µ¶Zx + x010dpW0, p eip(x−x ) = ρ0 (x, x0 ).(3.8)2π2Таким образом, информация, содержащаяся в функции Вигнера такая же, как и в матрице плотности, однако интерпретация ее не так проста и очевидна, как это могло быпоказаться из предыдущего примера.Рассмотрим первое возбужденное состояние осциллятораs22ψ1 (x) = √ xe−x /2 .(3.9)πМатрица плотности осциллятора в первом возбужденномсостоянии есть¶µ 22(x0 )2x00.(3.10)ρ1 (x, x ) = √ xx exp − −22πЛегко получить функцию Вигнера этого же состояния:W1 (q, p) = 2(2q 2 + 2p2 − 1) exp(−q 2 − p2 ).(3.11)Функция Вигнера по-прежнему нормирована на единицу иобладает свойством (3.6), однако при малых значениях q иp она становится отрицательной и поэтому не может бытьинтерпретирована как функция распределения вероятностей.

Это объясняется принципиальной невозможностьюописания квантовых систем в фазовом пространстве из-засоотношения неопределенностей для импульса и координаты. Таким образом параметры q и p в функции Вигнера неесть настоящие координата и импульс осциллятора. Сама90же функция Вигнера не имеет смысла распределения вероятностей, однако ее часто называют квазивероятностью иона широко используется в квантовой оптике.Тем не менее, распределение вероятностей ввести можно. Рассмотрим гауссово распределение для координаты,зависящее от двух параметров µ и ν :¶µx21,(3.12)exp − 2w0 (x, µ, ν) = pµ + ν2π(µ2 + ν 2 )связанное с функцией Вигнера основного состояния осциллятора обратимым преобразованием Фурье:Zdkdqdpw0 (x, µ, ν) =W0 (q, p)e−ik(x−µq−νp) .(3.13)(2π)2Обратное преобразование формулы (3.13) дает функцию Вигнера:Zdxdµdνw0 (x, µ, ν)ei(x−µq−νp) .(3.14)W0 (q, p) =2πМожно непосредственным вычислением убедиться, чтодля первого возбужденного состояния также существуетраспределениеw1 (x, µ, ν) = w0 (x, µ, ν)2x2,µ2 + ν 2(3.15)связанное с функцией Вигнера W1 (q, p) такими же формулами (3.13) и (3.14):ZdkdqdpW1 (q, p)e−ik(x−µq−νp) .(3.16)w1 (x, µ, ν) =(2π)2иW1 (q, p) =Zdxdµdνw1 (x, µ, ν)ei(x−µq−νp) .2π91(3.17)Заметим, что эмпирически найденная связь функцийВигнера с распределениями для основного (3.13) и (3.14)и первого возбужденного состояний осциллятора (3.16) и(3.17) совершенно не зависит от состояния осциллятора,поэтому она может быть распространена как на другие состояния, так и на другие системы.

Таким образом можнозаписать для произвольной функции Вигнера произвольнойсистемы связь с томографическим распределением:W (q, p) =Z1dxdµdν w(x, µ, ν) exp (−i(µq + νp − x)) .=2π(3.18)w(x, µ, ν) =Z1=dkdqdp W (q, p) exp (−ik(x − µq − νp)) .(2π)2(3.19)Обратное преобразование есть:Учитывая связь функции Вигнера с матрицей плотности, запишем также связь матрицы плотности с томографическим распределением:ρ(x, x0 ) =· µ¶¸Zx + x010dµdy w(y, µ, x − x ) exp i y − µ. (3.20)=2π2Упражнение Получить формулу (3.20), подставив ввыражение матрицы плотности через функцию Вигнера(3.8) определение (3.18).Определение функции Вигнера через матрицу плотности (1.7) можно записать в несколько иной форме.

Запишем его через матрицу плотности в координатном представлении в одномерном случае, убрав явную зависимостьаргументов от параметра интегрирования u :Z³u´u´ ³ 0δ z − q + e−ipu .W (q, p) = dzdz 0 duρ(z, z 0 )δ z − q −2292Выполняя интегрирование по параметру u, получаем интеграл только по аргументам матрицы плотности:ZW (q, p) = 2 dzdz 0 ρ(z, z 0 )e−i2p(z−q) δ(z + z 0 − 2q). (3.21)Теперь можно получить обратное преобразование для (3.20),выразив томографическое распределение через матрицу плотности:w(x, µ, ν) =·µ¶¸Zz−z 0z+z 0100dzdz ρ(z, z )exp −ix− µ.=2π|ν|ν2(3.22)Упражнение Получить формулу (3.22), подставив ввыражение томографического распределения (3.19) определение функции Вигнера в форме (3.21).Сравнивая формулы (3.21) и (3.22), можно заметить,что функция квазираспределения Вигнера W (q, p) и классическое (томографическое) распределение вероятностей w(X, µ, ν),причем последнее есть положительная нормированная функция, получены путем похожих интегральных преобразований матрицы плотности.Разница между двумя рассматриваемыми функциямиопределяется разницей ядер интегральных преобразований.Как видно из формулы (3.21) ядро интегрального преобразования для функции Вигнера естьKW (z, z 0 ; q, p) = 2e−i2p(z−q) δ(z + z 0 − 2q).(3.23)В случае преобразования симплектической томографии (3.22)ядро имеет вид:·µ¶¸1z−z 0z+z 00Kw (z, z ; x, µ, ν) =exp −ix−µ.(3.24)2π|ν|ν293Ключ к решению задачи о построении распределениявероятностей, задающего квантовое состояние, дает анализдиагональных элементов матрицы плотности.

Посколькутолько диагональные элементы матрицы плотности определяют распределение вероятностей, очевидно, что из распределения вероятностей нельзя найти недиагональные элементы матрицы плотности, поскольку для этого требуетсязнание не только модуля, но и фазы. Поэтому уместно задать такой вопрос: мы знаем модуль (квадрат модуля) волновой функции только в одной системе отсчета в фазовомпространстве.

Что изменится, если мы будем знать модульволновой функции во многих системах отсчета, описываемых набором параметров (например, параметров поворота)?В таком случае распределение w(x, θ) = |ψ(, θ)|2 зависит от двух переменных, а задача восстановления по функции двух переменных другой функции двух переменныхρ(x, x0 ) уже не представляется заведомо невыполнимой.

Именно эта программа и реализуется при задании квантовых состояний функциями распределения вероятностей. А именно, строятся только диагональные элементы матрицы плотности, но в ансамблях систем отсчета, задаваемых достаточным набором параметров. Затем по известной диагонали матрицы плотности как функции параметров системотсчета вычисляются недиагональные элементы матрицыплотности с использованием нетривиальных, но не оченьсложных интегральных преобразований.Данная программа проходит как для непрерывных переменных типа координаты, так и для дискретных наблюдаемых типа спина, но со своими особенностями при использовании ансамблей систем отсчета, в которых задается диагональ матрицы плотности.

Для координаты системы отсчета задаются в фазовом пространстве, причемиспользуются такие параметры, отличающие системы, как94поворот осей и изменение масштаба. В случае спина используются системы отсчета в обычном (конфигурационном) пространстве, а в качестве параметров, отличающихэти системы, выбираются углы Эйлера.4.4Уравнение эволюции для томографического распределенияУравнение эволюции для томографического распределенияполучается из уравнения Мойала (2.21) после установления соответствий дифференцирования и умножения между функцией Вигнера W (q, p, t) по своим переменным исоответствующими операциями для томографической вероятности w(X, µ, ν, t) по своим собственным переменным.Это соответствие устанавливается аналогично соответствиям (2.12)-(2.19) между операциями для матрицы плотностии функции Вигнера.Установим сперва чему соответствует операция умножения функции Вигнера на обобщенную координату длятомографической вероятности. Запишем формально (рассматриваем момент времени t = 0):Z1dxdµdνw(x, µ, ν)qe−i(µq+νp−x) .(4.1)qW (q, p) =2πУмножение экспоненты под знаком интеграла можно заменить дифференцированием по параметру µ.

Это можно сделать, поскольку сама экспонента зависит только откомбинации µq. После этого проинтегрируем по частям иполучим:¶µZ1∂qW (q, p) =dxdµdν −i w(x, µ, ν) e−i(µq+νp−x) . (4.2)2π∂µЗдесь, однако, мы не можем сказать, что умножению наобобщенную координату функции Вигнера соответствует95взятие производной от томографической вероятности, поскольку интегральное преобразование связывает между собой все три аргумента томографического распределения сдвумя аргументами функции Вигнера. Поэтому пойдем теперь в обратном направлении и определим, чему соответствует взятие производной от томографического распределения по одному из параметров:Z∂ 1∂w(x, µ, ν) =dqdpdkW (q, p)e−ik(x−µq−νp) =∂µ∂µ (2π)2Z³´1−ik(x−µq−νp)=dqdpdkW(q,p)ikqe=(2π)2µ¶Z1∂ −ik(x−µq−νp)=dqdpdkW (q, p) iqi e=(2π)2∂xZ∂ 1dqdpdkqW (q, p)e−ik(x−µq−νp) .(4.3)=−∂x (2π)2Теперь можно записать искомое соответствие:µ ¶−1∂∂w(x, µ, ν).qW (q, p) = −∂x∂µ(4.4)Здесь смысл обратной производной определен выражением(4.3).Как видно из формулы (4.3) умножению функции Вигнера на обобщенную координату соответствует взятие производной от томографической вероятности по “сопряженной” переменной (с определенным “довеском”.) Можно предположить, что взятию производной от функции Вигнерапо обобщенной координате будет соответствовать операция умножения но соответствующую сопряженную переменную томографической вероятности.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее