Главная » Просмотр файлов » Градштейн, Рыжик - Таблици интегралов, сумм, рядов и произведений

Градштейн, Рыжик - Таблици интегралов, сумм, рядов и произведений (947383), страница 84

Файл №947383 Градштейн, Рыжик - Таблици интегралов, сумм, рядов и произведений (Градштейн, Рыжик - Таблици интегралов, сумм, рядов и произведений) 84 страницаГрадштейн, Рыжик - Таблици интегралов, сумм, рядов и произведений (947383) страница 842013-09-15СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 84)

~ ховш(а — х) у,(х) с)х = о ( — 1)" Г (ч — Х+2в) Г (ч+ь+1) =2"' Х Г( — )Г(+2 2+2) (ч-)-2л4-1) Гв-ъч-1(~) -о (Ве()(+ч) > — 1). ИПП365(16) во+~У» (в) 2. 1х" сов(а — х)У~(х)а)х= „+ + + + 2 ь+~ ~х~~ ( — 1)вГ (» — 2+2» — 1) Г (ч-(-2+1) Г (ч — 2) Г (»+Х+2и+2)»4'Г» » 1 (Ве()»+ч) > — 1]. ИП П 336(26) 6.717 ~ ';~*-~ )) Г»+ы(х)((х=п6 'У»+в„(()) «» (» -()) 1<а< со, а=О, 1, 2, ...; Ве»> — —, 31 ип п 343 (46) 6.718 »» ып (ах) г» (чх) Их В и)( (о()) Кч(а)) [0< а< у, Ве() > О, — 1 <Веч < —,] . ИП П 33 (8) »»+4 2.

~ „—,~гсов(ах) Г»(ух) ~(х Д" сЬ (а()) К»(6») [ 0 < а < у, Ве () > О, — 1 < Ве ч < — ] . 12 ИП П 37(33) 766 о — ». опгхдиг(ынныж интвггвлы от спжпивльных а»акции 767 6.6 † ДИЛИНИРИЧИСКИЕ ЕУНИНИИ р 1-у Л у 3. ~ о у 31н(ох) Хч(7х) Их = — [) е- 61 улаф о [ 0 ( 7 ~ а, Ве[) > О, Ве ч > — ~ ~ . ОФ 4.

~, сов(ах)Хч(7х)Нх= — ф У 'е- !у(ру) о ИП П 33(9) ~ 0<7<а, Ве[з>0, Веч > — — 1 . ИП П 37 (34) 6.719 1. 1 Уу (х) 6(х— 61п ЦЬ) о )/ау — зз О\ =д ~~ ( — 1) УЗо+1(Сф)У1 6 ~ — а) /~ ~ (а) «-о 3 " % [Веч > — 2]. ИП П 335(17) 2. ~ ~ ~ Уу(х)~(х= — Хо(а[)) [.У~ [ —.а)1 + о 3" уу +а,", ( — 11".т„,( Р)Л Я 1З; ( —,' а1. уу 3 3 3 [Ве ч > — 1). ИП П 336 (27) 6.721 3, ~ )/х Ф~ (азх*) в(н (Ьх) ((х р 6 з -2 ~)/ЙЬа 'Н ~ —,). ИП 1 108 (7) ФЭ 4. ~ )/х М з (о'хо) оов (Ьх) Ых = =- ' "-',ся ИП152(7) 1. ~ ф х1~(аохз)в(н(Ьх)~(х 2 'а о)/ИЬ,у1( —,3) о [Ь > 01.

ИП 1 108 (1) 2. ~ )/х У , (аохо) сов (Ьх) 61х = 2 а 3 )/ыЫ 6 ( †, ) о 6 [Ь > О]. ИП151(1) 768 в — г. онекдилкннык инткгеелы от спкдивльных егннции СО 5. ~ ')Г хЕ» (авхв) зш(Ьх) Их = =2 ф'нвЬа в [1в( — в) — 1| ~ — в)~ [~агКа~< в, Ь>0~ . ИП( 106 (1 1) 1. ~ )' хХ~ (авхв) Уу (а'х') з(п (Ьх) сЬ'= в+" в ЬГ 5 [ йе т < —, ! аг6 а] < -5.. Ь > О] .

ИП 1 109 (13) 2. ~ Ь' х У г (авхв) Х г (авхв) соз (Ьх) в(х = в в+' 314 аг в -]~-" '[ '" С вЂ” )"', С )+ ~Л в Ьвг +ее И' в( — —,)И' г(-~-) ] в " в [Ь > О]. ИП 152(6) 3. ~ ]/хУг (авив) Уг (авхв) з1п(Ьх) г(х в в ~~ Ь [ее$Г 1( — )Иг г( —,)+ +е в И' г ( ) Иг в ~ —,)~ (Ь > О]. ИП1108(6) ЮО 6. ~ )/хЕ в (авхв) соз(Ьх)Ых 4 -г '] нвьа'[.( 1( —,) — ). 1( —,'*,)~ ]ь>0], ИП 1 52 (10) В. — В 2 ЦИЛИНДРИЧИСКИИ ОХНКДИИ 6.724 1.

~ хиУ,»( — ') в!п(Вх) )х= о Вв -'Г<3 +ОГ( -Л+ — ~ 2 У »ВЛ+»Г (ч — Л вЂ” 1) В ° 3 лве» ' — — — †. Л вЂ” 1-2 Л; »2; — ) 3»Л ЗГ„! Л+2, : !о) ( — — < йе Л < йе ч, а > О, Ь > 0 ) . ИП ! 109 (15) ЛЛ 2, ) хв»У»ч(-)сое(Ьх)дх 4~ "Г'пав»В™ ~1 Х » 1 'Л ! Г ч — Л вЂ”, Г( +Л+ф) ( — — „<йеЛ<йеч — —,, а>0, Ь>О~. ИП!53(14) 6.725 1 1 '!и (Ь ) У„(а ф/х) 1 » — ~'Ф" ( — "-7 — ".

ЖЮ) '( йе ч > — 5, а > О, Ь > 0( . ИП! 110(27) 2. ~ - Уч(аф х) 2)х= в /и ( в» чх и)у (в») !Кеч> — 1, а>0, Ь>0]. ИП154(25) 49 тавр»лл лч р»л»в 4. ~ р2 х 221 (а»хв) У 1 (а»х') сов(Ьх) Нх = в в 3 — 1(8 2 У вЂ” -1(8а* У Г йе ч < —, Ь > О ~ . ИП ! 52(12) »2 6 723 ~ хУ,'(х Я(е(о (чи) У» (хв) — сов (чи)!»У» (х')) Увч(4ах) раях в = в Уч(а') У-ч(а') 1 (а> О, йеч> — 1!.

ИПП375(20) 770 з — з. опткдклкннык инткгкзлы от спкцивльных эвикции ! 4. ~ хз Рч(аф' х) оси(Ьх) с(к= 2 «Ь "' за«в!зз ~ а — «а) ~ — 1<Ко <2, а>О, Ь>0~. ИП! 54 (26) 6.726 $ х (х*+ Ьз) ! .7« (а ф Р+ Ьз) в! и (сх) ((х = 9 ! 3 = 1~ — а-«Ь зс(аз — сз)з 77 з(Ь'|/а' — сз) т 2 ч-— [0<с<а, Ке«> ~~; =О [0<а<с, Квт> — [. ИП! 111 (37) СО $ (аз+ Ь ) з зч (а )/хз+ Ьз) сов(сх) Ых 1 ! = ~ — а Ь з(а' — сз)з з 2 з (5 Уса' — сз) 2 ч-- 2 ~0<с<а, Ь>О, Кеч>- —,~; 0 ~0<а<с, Ь>0, Кеч> — — ~.

1д 2! ' ИП! 55 (37) ~ х(х'+ Ь')з Ка«(а)'Р+ Ь') впз(сх)с!х е з з — а«Ь з с (аз+ с«) в« 7К з (Ь')/аз.1 сз) к Т вЂ” ч —— 2 [Кеа>0, ВеЬ>0, с>0). ИВ!113(45) 3 ! ~ (хз+ Ьз) з К» (а )/ хе+ Ьз) сов (сх) «(х = е 4 г— ! 1 = $/ — аи«Ьз (аз+с«) з 2К ~(Ь)/аз-~.с) — 2 ач —— з [Ве а > О, Ве Ь > О, с > 0). ИП! 56 (45) 3. ~ хз 2«(а) х)в!и(Ьх)дх= 2 ча«Ь ч сов~ — — ~~) ~, вь ~ — 2 < Ве ч < —, а > О, Ь > 0~ .

ИП ! 110 (28) из — з,» нилиндеичисиив етннции » (хз.+ аз) 2 К, (Ь [/хз+ а*) сов(сх)»(х = »» = ]/ — (аЬ) "(Ьз-с')2 18»»(а1/Ь' — Р) [О < с < Ь, 'а > О, Ве е > — — [; »» = — ~~(аЬ) (сз — Ьз)2 1К» (а[/сз — Ьз) [ 0< Ь<с, а> О, Ве»»> — — 1, ИШ56(41] 6.727 1' аз — зз — У» [ 2(]/Ь"+сз — с)]Х» ~ —.()/Ьз+с +с)~ [Ве м > — 1, с > О, а > О]. ИП1 113 (48) Ш ' /„(Ь)/х — а) ЬЬ = — У»»[ — (с — ]/сз — Ь)]» У»»[ —,(с+~Р-Ь)1 [0< Ь < с, а >О, Ве»» > — 1]. ИП! 113(49) "("1 у„(Ь]/т:.2),К*= $' зз — аз а †; .т, [ †; ( — )/" — Ьз) ~ К , ~ †;, (с + ]/се†Ьз) ~ 2 1» [О < Ь < с, а > О, Ве м > — 1].

ИП1 58 (54) (аз — хз)6 соех1»()/аз — хз)дх= 3 2 'гС.+2) (В > — Ч . В409(2) 6.728 ОЭ 1. ~ х в!и (ахз) Х, (Ьх)»!х = е = ~" 1 [.— "- — ')'1.-1[.— ")- е 2 2 2 --.%- — '")",. С")1 2 2 [а > О, Ь > О, Вам > — 4]. ИШ134(14) 772 2 — 1. ОНРЕДЕЛЕННЫЕ ЕНТЕРРАЛЫ ОТ СПЕЦИАЛЬНЫХ ФЪ'ННЦЕЕ О х сов (ах') У„(Ьх) 1Ь = ~сов( — — — )У1 1( — )+ сей 2 2 +вш( — — — )У1 1( — ) ~ 2 3 [а > О, Ь > О, Ке ч > — 2].

ИПП 38 (39) У (Вх) в(п (ахв) х 1Ь -5- сов — [а > О, [) > 0]. вз УА([)х) сов(ахс) хсЬ=~-в1п — [а > О, [) > О]. . В Э хч+1 яп (ахв) Уч (Ьх) 1Ь = — -д — — + 7сов ( — — — ) а>0, Ь>0, — 2<йеч< — 1 . МО 47 МО 47 ИПП 34445) Ь" . х Ьс В. ~ х"+' сов(ах') У„(Ьх) ах — в1п ( — — — ) вч+1 ~м+1 [ 4А 2 ) а>О,Ь>0, — 1<Иеч< — [ . 1-1 2 ИПП 38(40) 0.729 2$Е(ах ) У„(Ьх)У„.( ]Нх- — сов( — — — ) У„( —.) [и >О, Ь> О, с>0, Печ > — 2]. ИПП51(26) 1. ~ х вш (ахв) У» (Ьвв) Увч (2сх) 1Ь [0< а< Ь. Ие ч> — 1]; [О < Ь < а, йеч > — 1[. ИПП 356 (41) и СО х сов (ахв) Уч (Ьх) У„(сх) 1Ь вЂ” 21п ( — +' — — ~ У, ~ — ~ [а > О, Ь > О, с > О, Пе ч > — Ц.

ИПП 5$ (27) 774 оппздплкннып интпгпалы от сппниольных этнкпив 6.736 1. И х зсозхсоз(4аф'х)~Уо(х) дх о — 2 з)/и [з)п(ао — 4) У (ао)+соз (а — л)Ж„(а [а > О). ИПП 342 (22) Э х зз1пхзш(4а)/х)у (х)Нх= = 1/ — соз(ао+ — ) У (ао) [а > О). ИПП 341 (16) ~ х 1созхзш(4а)/х)У (х)3х= Ь вЂ” сов~ а — — ~У (ао) /л / о х зш х соз (4а )/х ) Х (х) 3х о [а > 0). ИПП 342 (20) 2 з )/ и [3 зш (а'- — ) Уо (ао) — соз (ао — — ) Л', (ао) 1 [а > О). ИПП 347(55) х 1созхсоз(4а)/х)Ж (х) дх= о о =- — 2 зф/и [Зсоз(а — 4) У,(а')+з)п(ао — 4 )Жо(ао)1 [о > О). ИПП 347(56) 6.

! 6.737 1. ОЗ вЂ” — Уз(сх) ~1з зп~ (а 1/ко+Ь*) о 1/ о*+о~ = — Уо [ — (а — )/ ао — со) Д У 1 [ — (а+ )/ао — со) Д [а>0, ВеЬ>0, с>0, а>е, Вот> — 1), ИПП35(19) ОЭ х 1з1пхсоз(4а)/х)Уо(х) ах = — 2 з)/и [сов( ао — — ) У (ао) — з1п(ао — — )Фо(ао)1 [а > О).

ИПП 341 (18) 6.6 — 6.7 ЦИЛИНДРИЯЕСИИЕ ЕУ НИНИН (.)/Гл+а')7 ( )3 о 2/ .«+67 = — Р, И(а — )/а' — с)1 и, И(а+1 а%:ссгВ 2 2 (а > О, Вв Ь > О, с > О, а > с, Ве ч > — 1], ИПП 39(44) =,,71 ( —;()/Ь+ *-Ь)~г1 ~ —;,(Р Ь*+'+Ь)~ 2 2« (с > О, Ке ч > — 1). ИПП 39 (47) 4 ( «+1~~(~ )7 () х (К > - Ц. ИПП 305 (9) „,.161е( 2"6'+ *)7 ( у'Ьа+ ' 1 1 1 — — ЬЬ с'(аг — сг) 1 2 У 1 (Ь)/аг сг) 2 -ч-- 2 0<с<а, Ввь>0, — 1 <Веч< — ~; 1 1 т)' =0 ~0<6<6, КеЬ>0, — 1<Квч< — ~.

2). ИПП 35 (30) « сог (а Р' к'+-Ь') о«а+67 о с — 1 1 1 = — $/ — Ьг с" (аг — сг) 2 2 К 1 (Ь)/аг — сг) Ь/ 2 -ч-— г ~0<с<а, ВеЬ>0, — 1<Веч< —, 1 1 1 = Ь/ — Ьг сч(сг — а') а г К 1(Ь)/сг — 11') Я «+- 0<а<с, ВеЬ>0, — 1<Кеч< —,7 ) . 21 ИПП 39 (45) 6.738 1. ~ х'+1 гге(Ь7 а' — хг) У,(х) 6(х 2 = Ь7/ — а 2! (1+32) 2 «У 2(а)/1+Ьг) (Ввч> — 1). ИППЗ35(19) 776 о — 1 ОЛРипелинные интегРАлы От специАльных Фтниции аъ ~ х"+1сов[ЕЬ~хз-)-Ьз]а (сх)йх= 3 1 3 ~/ — "аЬ 'с" (а' — ') ' 3 [сов(ич)1 3 (Ь Р'а' — с')— 2 + 2 — вза(ич)Л' з[Ь |/аз — сз)] а+2 0(с(а, КРЬ>0, — 1(Кеч( — —, 1 1 0 < и < с, Ке 6 > О, — 1 < Ке ч < — 22-1 . 1 1 ИП П 39[43] =0 1 -- сов (ь3/1 — а) у ( г"-] 1 =-~.ЖЬ'*+ +ЬВ у.

~Ф[Ъ а+Ь*-Ь] "] [ Кеч> — 1. ИТФП47(7) 6.739 1 ~ созКч+1)взссова) 7 зги (а) (а ) о 2 [К ч > — 1, а > О]. ИП П 40 (53) 1 Ь 2 [Кеч>0, а>0]. ИПП40(52)а 6.75 1(илиндрические. тригонометрические, ноиазательиаи и степенная функции 6.751 е 2 в1а(Ьх) Уа( —,ах ~ з(х= = — [ Ь+ЬГЬз.+аз а(2 Г Р'2Ь Ьгзз+а [Кеа>0, Ь>0]. ИП1105(44) ш в 2 сов(Ьх)13( — ах)32х-= Р 2Ь р аа]. Ь1)l Ь-~. р'аз+Аз [Кеа > О, Ь > О].

ИП 148(38) ~ 7 — '-'"'*""'"' =-""- . (В'-;,.—. (й о 2 [Ке (р+ ч) > — 1, а >0]. ИП П 41 (54) еь-ел нилинлвичвскив хчнкдии (р !ь+ )+ь ь+ь, — Р ~ е "сов ах ао сх Их=в о Р' 2 Р' (Ьа-! аа — а-')а+оааоа [с > 0). ИП П11(46) 6.752 е У (сх) в!и (Ьх) — = — (1 - е), и ь х а о '( Ье аа р--е - —,, е > 01 . ИП П 19 (15) а е1п(хае|пч)е- аааеаааЕУ (хав!пф) 1х=ч '( е8 Р ~~в!п(чф) х 2 / о ~йеч > — 1, а > О, 0 < ф, ф а — 1, ИП П 33(10) аа — е- ~еааечХ„(хав!пф)Ых ч '(!8 — ) сов(чф) о ( Веч>0, а>0, 0(ф, ар< — "-]. ИПП38(35) хче-1е-ааа: еааазв!п(ах в!пф) Х (ахз!пф) ~(х =- о "~" -') 3 з а-ч-е (в!п ф)' (совеф+ вш'фсов'ф) о вш ( (ч+ — ) 5 ~ 1и —, = !а 1р сов ф 2 = 2"+' ) а>0, 0<ф, ф< — ", Коч> — — ~.

ИПП34(11) ха+1е ааааачааачсов(ахв!пф).(»(ахв!пф)ах= ( з ~ е + 2, р'л ' а — а — е(в!пф) (совеф+в!пефсовеф) асов[~ »+ — )р ), ~( 2) ои —. = !ифсовф (! а > О, О ( ф, ф < —, (!еч > — 1) . а 2 ИП П 38(ЗО) 21 -г! ех 2е е ааа (Бх) вш (сх) — атсз!п ! Р' а" +(с+Ыа+Р' аа-!-!а — Ыа ) о (Ве а > ) !ш Ь (, с > О). ИП 1 101 (17) 779 е о — ол цилиндеичяскик вз нкции ~ х-'е" в)а (4а ]' х) Кч (х) Нх= о „(з еч Ич1 о 1 1 (2ао) ) — — -,1 — -ч (. 2 0(Веч< — ]. ИПП369(38) (22 )ч-1 [а>0 чч ~ х ое" сов (4а ф' х ) Кч (х) е)х = о 1ч-$ (2 — 2ч) =2 иач ' — е *)Го (2ао) Г(-'+ ) [а>0, — ~ <Ввч( О ] ' ИПП369(42) о " виа (4а ]/ х) )Кч (х) ч)х = о ф~кеГ(ц+ч)Г)Π— ч) ( В 1 во оГ(о+2) [Ве9>[ВечЦ. ИПП369(39) ~ хо — че сов(4а]/х)Кч(х)Ых= о ОчиГ)Е+ч)Г)Š— ч) Г 1 1 — — Л [ Е+ е, Š—: 2, Е+ 2; — 2а' ) [Ве д > 1Вв ч )].

Характеристики

Тип файла
DJVU-файл
Размер
13,16 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее