Главная » Просмотр файлов » 05 Линейные операторы в евклидовых пространствах

05 Линейные операторы в евклидовых пространствах (936692), страница 3

Файл №936692 05 Линейные операторы в евклидовых пространствах (Лекции Линейная алгебра и ФНП) 3 страница05 Линейные операторы в евклидовых пространствах (936692) страница 32015-05-08СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Для любой симметрической матрицы M существует такая ортогональнаятматрица U , что U M U = Λ, где Λ = diag (λ1 , . . . , λn ) — диагональная матрица, диагональными элементами которой являются собственные значения матрицы M , повторяющиеся согласноих кратности.J Доказательство теоремы основано на следствии 5.4, теореме 5.9 и свойстве 5.2. Согласноследствию 5.4, для симметрической матрицы M порядка n существует такая невырожденнаяматрица P , что P −1 М P = Λ = diag (λ1 , . .

. , λn ), где в последовательности λ1 , . . . , λn указанывсе собственные значения матрицы M с учетом их кратностей. Из доказательства того жеследствия вытекает, что P является матрицей перехода между ортонормированными базисами.тПоэтому P — ортогональная матрица (см. теорему 5.9) и P −1 = P (см. свойство 5.2).

Следотвательно, P М P = P −1 М P = Λ, т.е. в качестве матрицы U в формулировке теоремы можновзять P . IÔÍ-12Преобразование (5.12) с ортогональной матрицей U иногда называют ортогональнымпреобразованием матрицы A. Поэтому теорему 5.10 можно сформулировать так: любаясимметрическая матрица ортогональным преобразованием приводится к диагональному виду.Чтобы найти соответствующую матрицу U , о которой говорится в этой теореме, необходимо:1) найти собственные значения матрицы M ;2) для каждого собственного значения найти набор собственных векторов, соответствующих этому собственному значению, при этом эти собственные векторы должны быть линейнонезависимыми и их количество должно равняться кратности собственного значения;3) преобразовать системы собственных векторов, полученные для каждого собственногозначения, в ортонормированные при помощи процесса ортогонализации Грама — Шмидта.ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÔÍ-12(5.12)ÌÃÒÓÌÃÒÓтA0 = U AU.ÔÍ-12ÔÍ-12Матрица A линейного оператора A при замене базиса преобразуется согласно формулеA0 = U −1 AU , где U — матрица перехода (см.

теорему 3.5). Если речь идет об евклидовомпространстве и переходе из одного ортонормированного базиса в другой, матрица переходаU является ортогональной (см. теорему 5.9). Согласно свойству 5.2, такая матрица удовлеттворяет соотношению U −1 = U . Поэтому для случая ортонормированных базисов формулупреобразования матрицы линейного оператора можно записать следующим образом:ÌÃÒÓÌÃÒÓПоследнее равенство в приведенной выкладке следует из того, что столбцы e1 , .

. . , en —это столбцы координат векторов ортонормированного базиса в ортонормированном базисе, атматричное произведение ei ej представляет собой запись в координатах скалярного произведения (ei , ej ), которое в силу ортонормированности базиса e равно нулю при i 6= j и единице приi = j.тМы показали, что U U = E, а это, согласно определению 5.3 ортогональной матрицы, иозначает, что U — ортогональная матрица.

IÌÃÒÓÌÃÒÓ63ÔÍ-12ÌÃÒÓÌÃÒÓПРОСТРАНСТВАХÔÍ-12ÔÍ-12ЛЕКЦИЯ 5. ЛИНЕЙНЫЕОПЕРАТОРЫ В ЕВКЛИДОВЫХÌÃÒÓλ3 − 12λ2 + 21λ − 10λ3 − λ2λ −1λ2 − 11λ + 10− 11λ2 + 21λ− 11λ2 + 11λÔÍ-1210λ − 1010λ − 100Получаем разложение(λ − 1)(λ2 − 11λ + 10) = 0,x1 + 2x2 − 2x3 = 0,Ранг матрицы этой системы равен единице (все строки матрицы системы пропорциональны), поэтому можно отбросить второе и третье уравнения, оставив первоеx1 + 2x2 − 2x3 = 0.ÔÍ-122x1 + 4x2 − 4x3 = 0, −2x − 4x + 4x = 0.123ÌÃÒÓоткуда находим оставшиеся два корня λ2 = 1, λ3 = 10.

Таким образом, имеются два собственных значения: 1 кратности 2 и 10 кратности 1.2–3. Найдем для собственного значения λ1,2 = 1 кратности 2 два линейно независимыхсобственных вектора. Для этого нужно найти фундаментальную систему решений однороднойсистемы линейных алгебраических уравнений (A − E)x = 0, т.е. системыÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12Это уравнение третьей степени. Так как его коэффициенты являются целыми числами, то целоечисло может быть его корнем лишь в случае, если оно делитель свободного члена. Поэтому мыможем поискать корни среди чисел ±1, ±2, ±5, ±10. Подстановкой в уравнение убеждаемся,что одним из корней является λ1 = 1.Найденный корень позволяет разложить левую часть характеристического уравнения налинейный и квадратичный множители, например, при помощи деления характеристическогомногочлена на λ − 1 «в столбик»:ÌÃÒÓÌÃÒÓк диагональному виду.1. Находим собственные значения матрицы A.

Для этого составляем ее характеристическоеуравнение2−λ2−2det(A − λE) = 2 5 − λ −4 = −λ3 + 12λ2 − 21λ + 10 = 0. −2−4 5 − λ ÌÃÒÓÔÍ-12Пример 5.8. Найдем ортогональное преобразование, приводящее симметрическую матрицу22 −25 −4 A= 2−2 −45ÔÍ-12ÌÃÒÓОбъединить ортонормированные системы для каждого собственного значения в единую системувекторов, которая будет ортонормированным базисом евклидова пространства;4) выписать матрицу U , столбцами которой являются координаты векторов построеннойортонормированной системы.ÌÃÒÓÔÍ-12ÌÃÒÓ64ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓПРОСТРАНСТВАХÔÍ-12ÔÍ-12ЛЕКЦИЯ 5. ЛИНЕЙНЫЕОПЕРАТОРЫ В ЕВКЛИДОВЫХÌÃÒÓНайденные векторы e1 , e2 , e3 образуют ортонормированный базис из собственных векторов.Замечание 5.2.

В случае n = 3 при λ1 = λ2 6= λ3 собственные векторы удобнее с точкизрения экономии вычислений находить в следующем порядке. Сначала для собственного значения кратности 1 (λ3 = 10 в рассмотренном примере) найти собственный вектор и нормироватьÔÍ-12которая и является искомой.Убедиться в том, что матрица U определена правильно, можно при помощи подстановкиматрицы U и заданной матрицы A в следующее тождество:1 0 0тU AU =  0 1 0  .0 0 10ÌÃÒÓ4.

Составим из найденных векторов ei матрицу√ −6 2√51 U= √3 42√5  ,3 50 5 −2 5ÔÍ-12В качестве ее фундаментальной системы решений можно взять одно ненулевое решение, напритмер вектор b3 = (1 2 − 2) . Нормируя этот вектор, получаем11e3 =  2  .3−2ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓДля собственного значения λ3 = 10 система линейных алгебраических уравнений имеет вид(A − 10E)x = 0, или −8x1 + 2x2 − 2x3 = 0,2x1 − 5x2 − 4x3 = 0,−2x1 − 4x2 − 5x3 = 0.ÌÃÒÓÔÍ-12Найденные собственные векторы, соответствующие собственному значению λ1,2 = 1, линейно независимы, но ортогональными не являются. Построим по ним другую, ортонормированнуюпару собственных векторов e1 , e2 при помощи процесса ортогонализации Грама — Шмидта:−21b1= √  1 ,e1 =kb1 k50 21 4 ,g 2 = b2 − (b2 , e1 )e1 =553kg 2 k = √ ,5 21ge2 = 2 = √  4 .kg 2 k3 5 5ÔÍ-12ÌÃÒÓВ качестве независимых переменных выбираем x2 , x3 .

Фундаментальную систему решенийсоставляют x2 = 1, x3 = 0, x1 = −2 и x2 = 0, x3 = 1, x1 = 2, т.е. векторы −22b1 =  1  ,b2 =  0  .01ÌÃÒÓÔÍ-12ÌÃÒÓ65ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓПРОСТРАНСТВАХÔÍ-12ÔÍ-12ЛЕКЦИЯ 5. ЛИНЕЙНЫЕОПЕРАТОРЫ В ЕВКЛИДОВЫХÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12его. Обозначим полученный вектор, например, e3 . Затем для собственного значения кратности 2 (λ1,2 = 1 в рассмотренном примере) найти один собственный вектор и нормировать его.Получим вектор e1 .

Векторы e1 и e3 будут ортогональными согласно теореме 5.4. Недостающий третий вектор ортонормированного базиса может быть найден при помощи векторногопроизведения: e2 = e1 ×e3 .Описанный прием позволяет избежать процесса ортогонализации. Точно так же можно неприменять процесс ортогонализации при n = 2, так как, зная один вектор e1 ортонормированного базиса, мы можем получить второй поворотом первого на 90◦ . Для этого достаточнопоменять две координаты вектора e1 местами, а у первой из них к тому же изменить знак.ÌÃÒÓÌÃÒÓÌÃÒÓ66ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓПРОСТРАНСТВАХÔÍ-12ÔÍ-12ЛЕКЦИЯ 5. ЛИНЕЙНЫЕОПЕРАТОРЫ В ЕВКЛИДОВЫХÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÔÍ-12ÌÃÒÓÌÃÒÓÌÃÒÓÔÍ-12ОГЛАВЛЕНИЕ.........................

. . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . ..................565658596063ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12Линейные операторы в евклидовых пространствах . .Сопряженный оператор . . . . . . . . . . . . . . . . . . . . . . .Самосопряженные операторы и их матрицы . . . . . . . . .

.Собственные векторы самосопряженного оператора . . . . . .Ортогональные матрицы и ортогональные операторы . . . . .Приведение симметрической матрицы к диагональному видуÔÍ-1267ÌÃÒÓЛекция 5.5.1.5.2.5.3.5.4.5.5.ÌÃÒÓÌÃÒÓÔÍ-12ÔÍ-12ÔÍ-12ÌÃÒÓÌÃÒÓÔÍ-12ÌÃÒÓ.

Характеристики

Тип файла
PDF-файл
Размер
755,64 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

ФНП лекции
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее