man2ver2 (542561), страница 3
Текст из файла (страница 3)
Определение выборочных характеристик
Statistics - Summarize - Descriptives...- Variable(s): x1, x2, убираем выделения внизу - Options - отмечаем нужное: Mean, Sum, Std. Deviation (стандартное отклонение), Range (размах), Minimum, Maximum - Continue - OK.
Наблюдаем таблицу, в которой показаны отмеченные характеристики для обеих выборок. Выделяем таблицу и сохраняем ее:
File - Save As - Name: Descr. Lst (например) - ОК. Сравниваем выборочные средние и стандартные отклонения с теоретическими.
Проверка гипотезы о типе распределения
Проверим обе наши выборки с помощью критерия Колмогорова - Смирнова на нормальность распределения и равномерность:
Statistics - Nonparametric Tests - 1 Sample K - S - в поле Test Variable List: x1, x2 (переносом из списка слева), в поле Test Destribution отметим Normal, Uniform - OK.
В окне Output даются результаты тестирования двух выборок по двум гипотезам: итого 4 сообщения. Например, результат тестирования х1 на нормальность (Test distribution - Normal): приводятся параметры гипотетического распределения (оценки) Mean è Standart Deviation; статистика Dn Колмогорова (Most estreme differences Absolute), z = Dn (K – S Z) и уровень значимости 2 – Tailed P; если последний порядка сотых долей или меньше, гипотезу следует отклонить.
Выписываем упомянутые значения и делаем выводы.
Заметим, что такой способ проверки при отклонении гипотезы можно считать корректным, а при принятии - это не совсем так (см. более подробные руководства по статистике).
Описание двумерных выборок
а) Ввод данных: в свободные два столбца введем с клавиатуры данные из табл. 2; назовем их x и y.
б) Диаграмма рассеяния:
Graphs - Scatter...- Simple - Define - X Axis: x, Y Axis: y - OK.
Наблюдаем диаграмму; сохраним ее или распечатаем.
в) Выборочные характеристики.
Некоторые характеристики см выше.
Определение корреляционной матрицы:
Statistics - Correlate - Bivariate - в поле Variables: x, y (переносом из левого списка), Correlation Coefficients: Pearson Test of Significance: Two - tailed (двусторонний тест Пирсона на значимость отличия от нуля) - ОК.
В окне Output имеем таблицу 2 2 коэффициентов корреляции и уровней значимости Р; если Р порядка сотых долей или меньше, гипотезу о нулевом значении коэффициента следует отклонить. Если Р порядка 0.1 или более, коэффициент корреляции следует считать нулевым. Матрицу выделяем и сохраняем ее или распечатываем.
г) Трехмерная диаграмма.
Для примера образуем третью переменную (столбец) z, равную x + y.
Построим диаграмму:
Graphs - Scatter...- 3D - Define - X Axis: x, Y Axis: y, Z Axis: z - OK.
Наблюдаем трехмерную диаграмму. Будем изменять точку обозрения: Edit - Spin - вращаем трехмерную совокупность с помощью 6 кнопок, находим удачную точку - End Spin.
Сохраняем рисунок или распечатываем.
47