Главная » Просмотр файлов » Лабораторная работа №6

Лабораторная работа №6 (542554)

Файл №542554 Лабораторная работа №6 (Лабораторные работы)Лабораторная работа №6 (542554)2015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лабораторная работа №6

по курсу «Теория вероятностей

и математическая статистика»



Выполнил : студент группы А-13-03
Орлов Алексей Васильевич

Москва 2006

Различение двух простых гипотез

1. Различение при фиксированном объеме наблюдений

Пусть имеется совокупность наблюдений x = ( х1, ..., хn), относительно которой имеется два предположения (гипотезы):

H0: x распределена по закону p0(х);

H1: х распределена по закону p1(x) (если х - непрерывна, то p0(х), p1(х)- плотности, если дискретна - вероятности).

По х требуется принять одно из двух решений: иливерна Н0 (это решение обозначим 0) или верна Н1 (решение 1). Ясно, что дело сводится к определению решающей функции (х), имеющей два значения 0 и 1, т.е. к определению разбиения Г= (Г0, Г1) пространства Х всех возможных значений х:

(x) =

При использовании любой решающей функции (х) возможны ошибки двух типов:

ошибка 1-го рода: принятие Н1 при истинности Н0,

ошибка 2-го рода: принятие Н0 при истинности Н1.

любая решающая функция характеризуется двумя условными вероятностями

= Р( принять Н1 Н0) = , (1)

= Р( принять Н0 Н1) = ,

которые называются вероятностями ошибок 1-го и 2-го рода соответственно. Хотелось бы иметь  и  близкими к нулю, но из (1) ясно, что, вообще говоря, если одна из них уменьшается, например,  (за счет уменьшения Г1), то другая, , увеличивается (за счет увеличения Г0; Г0Г1 = Х, Г0 \ Г1 = ). Существуют различные подходы к определению оптимального правила.

Байесовский подход

Будем считать, что многократно сталкиваемся с проблемой выбора между Н0 и Н1; в этом случае можно говорить о частоте, с которой истинна Н0 (или Н1) , т.е. о том, что истинность Н0 (или Н1) - событие случайное, причем вероятность события, когда верна Н0 (или Н1),

Р(Н0) = q0 , Р(Н1) = q1 , q0 + q1 = 1.

Кроме того, будем считать, что за каждую ошибку 1-го рода платим штраф W0, а за ошибку 2-го рода - штраф W1. Если пользуемся правилом  (с разбиением Г), то средний штраф от однократного использования его

R(Г) = q0(Г)W0 + q1(Г)W1 .

Назовем правило  (соответственно разбиение Г (Г0, Г1)) оптимальным (в байесовском смысле), если

R(Г) =

Оказывается (и это нетрудно доказывается) оптимальным является правило, для которого область Г1 такова:

Г1 = . (2)

В частном случае, если W0 = W1 = 1, R(Г) имеет смысл безусловной вероятности ошибки, а соответствующее оптимальное правило называется правилом “идеального наблюдателя” или правилом Зигерта- Котельникова.

Подход Неймана-Пирсона

Оптимальным (в смысле Неймана-Пирсона) назовем такое правило, которое имеет заданную вероятность ошибки первого рода, а вероятность ошибки второго рода при этом минимальна. Формально, правило  (соответственно разбиение Г) оптимально, если

(Г) = ,

при условии (Г)  0 .

Оказывается, для оптимального правила область Г1 такова:

Г1 = , (3)

где h определяется из условия

(h) =0 (4)

Замечание. Приведенный результат есть частный случай фундаментальной леммы Неймана - Пирсона, справедливый при условии, что существует корень h уравнения (4). Это условие не является существенно ограничивающим: действительно, при изменении h от 0 до  область Г1 уменьшается, и (h) уменьшается от 1 до 0. Можно, однако, привести примеры, когда (h) имеет скачки, и тогда (3) требует некоторого простого уточнения.

Пример 1. Различение гипотез о среднем нормальной совокупности.

На вход канала связи подается сигнал S, который может принимать два значения:

S = 0 (сигнала нет), S = а 0 (сигнал есть).

В канале действует аддитивная случайная ошибка , нормально распределенная со средним М = 0 и дисперсией D = 2; результатом является х= S + . Измерения повторяются n раз, так что на выходе имеются наблюдения (х1, ..., хn) х, по которым нужно решить, есть ли сигнал (H1: S = a) или нет (H0: S = 0). Требуется построить решающее правило , имеющее заданную вероятность 0 ошибки первого рода (вероятность ложной тревоги)

  Р(принять Н1Н0) = 0

при минимальном значении вероятности  ошибки второго рода (вероятности пропуска).

считая ошибки независимыми, с учетом того, есть ли сигнал (Н1) или его нет (Н0), имеем

р1(х) = , р0(х) = .

В соответствии с (3), решение о наличии сигнала нужно принять (принять Н1), если х попадает в Г1, где

Г1= = = .

Итак, если

, (5)

то принимается Н1; в противном случае принимается Н0. Порог h2 определяется из (4):

. (h2) = P{пр. Н1 / Н0} = = 0.

если верна Н0, то распределена нормально со средним 0 и дисперсией n2, и потому последнее условие принимает вид:

(h2)= 1 - Ф = 0 ,

откуда

h2 = Q(1 - 0), (6)

где Ф(х) - функция нормального N(0, 1) распределения; Q(1 -0) - квантиль порядка (1 - 0) этого распределения.

Определим вероятность  ошибки второго рода для процедуры (5) с порогом (6). Если верна Н1, то распределена нормально со средним na и дисперсией n2, и потому

 = P(пр0 /H1)= P { h2 /H1} = Ф = Ф(Q - ).

Положим, а = 0.2,  = 1.0 (т.е. ошибка  в 5 раз больше сигнала а), n = 500,  = 10-2 ; при этом

h2 = 1   2.33 = 52,  = Ф(2.33 - 0.2  22.4) = Ф(-2.14) = 1.6  10-2;

как видим, вероятности ошибок невелики: порядка 10-2.

Моделирование. Проиллюстрируем этот пример статистически, с помощью пакета. Сгенерируем две выборки объема n = 500 в соответствии с гипотезами Н0 и Н1. Для обеих выборок построим гистограммы (в диапазоне от -2.5 до 2.5 с 20 интервалами) и убедимся, что “на глаз” различие не заметно. Определим сумму наблюдений по каждой выборке и применим решающее правило (5) с порогом (6). Убедимся, что в обоих случаях решающее правило дает правильное решение.

Результаты эксперимента.

Применяя решающее правило, получаем:

Для первой выборки: = 2.988 < h2 = 52 => принимаем гипотезу Н0,

т.е. S=0.

Для второй выборки: = 130.53 > h2 = 52 => принимаем гипотезу H1,

т.е. S=a=0.2.

2. Последовательное различение двух простых гипотез (последовательный анализ Вальда)

Задачу различения двух простых гипотез поставим иначе. Объем наблюдений фиксировать не будем. рассмотрим правило различения, которое имело бы заданные уровни вероятностей ошибок и при этом требовало минимальное в среднем число наблюдений. Во многих практических ситуациях требование скорейшего принятия решения является весьма существенным, например, испытания надежности, выборочный контроль, принятие решения о наличии цели в радиолокации, испытания экономической системы и т.д.

Пусть х1, ..., хn, ... - последовательность независимых, одинаково распределенных случайных величин. Относительно распределения имеется два предположения:

Н0 : наблюдения распределены с плотностью р0 (х),

Н1 : наблюдения распределены с плотностью р1(х); (если наблюдения дискретны, то р0 (х), р1(х) - вероятности).

После каждого наблюдения предоставляется выбор из трех возможных решений:

- принять Н0 и закончить наблюдения,

- принять Н1 и закончить наблюдения,

- не принимать ни одну из гипотез и продолжить наблюдения.

Формулировка решающего правила (последовательный критерий отношения вероятностей). Рассмотрим следующую процедуру . Зафиксируем два порога: верхний А и нижний В: 0 < В < 1 < А. Пусть уже получено n наблюдений (n = 1, 2, ...); обозначим

Ln(x1, ..., xn) =

- отношение правдоподобия. Процедура * на очередном шаге n такова:

если Ln(x1, ..., xn) A, то принимается Н1 и наблюдения заканчиваются;

если Ln(x1, ..., xn) В, то принимается Н0 и наблюдения заканчиваются; (7)

если В Ln(x1, ..., xn) < А, то делается еще одно наблюдение.

Очевидно, эта процедура характеризуется некоторыми вероятностями ошибок и средними числами наблюдений:

= (А, В) = Р{ пр. Н1 /Н0}, = (А, В) = Р{пр. Н0 /H1},

n0 =n0(А, В) = М( /H0), n1 = n1(А, В) = М( /H1),

где  - число наблюдений (случайная величина) до принятия окончательного решения. Если 0 и 0 заданы, то в принципе можно найти пороги А и В, т.е. правило *. Оказывается, такое правило обладает свойством оптимальности.

Теорема (Вальд и Вольфовиц, 1948 г.). Среди всех решающих правил , обладающих свойством

()  0 , ()  0 ,

последовательный критерий отношения вероятностей * имеет минимальные средние числа наблюдений:

n0 (*)  n0(), n1 (*)  n1(),

Заметим, что минимальность достигается сразу по двум характеристикам. (см. [7]).

Основные формулы. Легко показать справедливость неравенств, связывающих пороги с вероятностями ошибок:

А , В .

Характеристики

Тип файла
Документ
Размер
813,5 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее