man1 (542558), страница 2

Файл №542558 man1 (Лабораторные работы) 2 страницаman1 (542558) страница 22015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

2. По всем выборкам определим среднее:

3. Выделим полученную строку средних и определим для нее стандартное отклонение:

4. Действия повторяем для n = 40, 160, 640. Результаты заносим в табл.1, вычисляем размах и убеждаемся, что с ростом n разброс средних уменьшается (распределение сжимается).

5. Сжатие распределения для ­­­­ с ростом n можно показать графически.

3. Усиленный закон больших чисел.

Теорема Бореля (1909 г.) ( первая теорема на эту тему) утверждает, что относительная частота fn появления случайного события с ростом числа n независимых испытаний стремится к истинной вероятности p

(6)

с вероятностью 1. Другими словами, при любом эксперименте с бесконечным числом испытаний имеет место сходимость последовательности fn к p.

Будем говорить, что последовательность случайных величин подчиняется усиленному закону больших чисел, если

при n (7)

с вероятностью 1.

В частном случае, при равных математических ожиданиях, Mi=a, это означает

при n (8)

с вероятностью 1.

Достaточное условие выполнения (7) дает

Теорема Колмогорова. Если последовательность взаимно независимых случайных величин удовлетворяет условию

,

то она подчиняется усиленному закону больших чисел.

Для независимых и одинаково распределенных случайных величин справедлив окончательный результат:

Теорема. Необходимым и достаточным условием для применимости усиленного закона больших чисел к последовательности независимых величин является существование математического ожидания.

Проиллюстрируем (6) на примере бросания симметричной монеты, а (8) - на примере равномерно R[0,1] распределенных случайных величин.

Из последовательности x1 ,..., xN независимых наблюдений построим последовательность f1, ..., fN среднеарифметических, где

fn = , n = 1, ..., N

и убедимся графически в том, что fn c ростом n приближается к математическому ожиданию.

Эксперименты с монетой.

Сгенерируем 3 последовательности по 500 бросаний монеты в первые 3 столбца таблицы 6v  500c. Посмотрим графически зависимость fn от n в различных диапазонах: от 1 до 25, до 50, до 100, до 500:

Наблюдаем график с тремя кривыми.

Аналогично получаем графики для других диапазонов по n (рис.3, рис.4). Убеждаемся, что частота выпадения герба fn c ростом n приближается к вероятности герба р = 0,5. Для большей наглядности графика добавим константу 0,5, для чего образуем 7 столбец с этим значением, и выведем его вместе с частотами.

Распечатываем график для диапазона 1100.

Рис.3. Относительная частота выпадения герба при изменении n.

Рис.4. Относительная частота выпадения герба при изменении n.

Эксперименты со случайными числами, распределенными равномерно на отрезке [0, 1].

Рис.5. Текущее среднее для R[0, 1] наблюдений.

Рис.6. Текущее среднее для R[0, 1] наблюдений.

Пример невыполнения закона

посмотрим на последовательностях случайных чисел, распределенных по закону Коши.

Выведем для них графики средних значений.

Анализируя результирующие графики, видим, что кривые среднеарифметических иногда испытывают скачки, которые отбрасывают их значения далеко от 0 – центра распределения.

4.Теорема Гливенко  основная теорема статистики

Пусть x1, x2,...,xn - выборка из n независимых наблюдений над случайной величиной X с функцией распределения F(x). Расположим наблюдения в порядке возрастания; получим

-вариационный ряд. Определим функцию эмпирического распределения

,

где - число тех наблюдений, для которых xi. Ясно, что - ступенчатая функция; это функция распределения, которое получается, если значениям x1,...,xn присвоить вероятности, равные 1/n. Ясно, что -функция случайная , так.как зависит от наблюдений x1,...,xn.

Теорема Гливенко:

при

с вероятностью 1.

Проиллюстрируем эту теорему на примерах наблюдений над случайной величиной, распределенной по равномерному на [0,1] закону.

Сравним графически функцию эмпирического распределения для выборки объема n = 10 и функцию теоретического распределения. Будем работать в модуле Data Management, поскольку операция сортировки находится в нем.

а) Подготовка функции эмпирического распределения.

Заготовим таблицу размером 3v 10c.

В первом столбце (назовем его х) сгенерируем выборку объема 10 с равномерным на отрезке [0, 1] распределением.

Построим вариационный ряд, т.е. сделаем сортировку по возрастанию

Во втором столбце вычислим значения функции эмпирического распределения:

б) Подготовка функции теоретического распределения.

Поскольку функция равномерного на [a, b] распределения определяется на [a, b] отрезком прямой, ее можно задать двумя точками (а, 0) и (b, 1), в данном случае (0, 0) и (1, 1). В третьем столбце, назовем его FT, введем два значения 0 и 1 (с клавиатуры).

в) Покажем на одном графике две функции распределения:

Наблюдаем функции теоретического и эмпирического распределений (рис.7). Выводим график.

Теперь повторим а)  в) для n = 40, 160, 640. Убедимся в том, что при увеличении n функция эмпирического распределения приближается к теоретической (рис.8,рис.9).

Рис.7. Функции эмпирического и теоретического распределений n=10, R[0, 1].

Рис.8. Функции эмпирического и теоретического распределений n=40, R[0, 1].

Рис.9. Функции эмпирического и теоретического распределений n=160, R[0, 1].

5. Центральная предельная теорема

5.1.Содержание теоремы

Закон больших чисел утверждает , что при n

,

где а = Mi. Центральная предельная теорема утверждает нечто большее, а, именно, что при этом стремлении происходит нормализация:

, (10)

где , т.е среднеарифметическое при больших n распределено приближенно по нормальному закону с дисперсией 2/n; этот факт записывают иначе, нормируя сумму:

.

Приведем формулировку одной из теорем.

Теорема Линдеберга. Если последовательность взаимно нeзависимых случайных величин 1, 2,..., n,... при любом постоянном >0 удовлетворяет условию Линдеберга

,

где , , то при n равномерно относительно x

(11)

Следствие. Если независимые случайные величины 1, 2,..., n,... одинаково распределены и имеют конечную отличную от нуля дисперсию, то выполняется (11).Условие Линдеберга в этом случае, т.е. Mk=a, Dk=2, Fk(x)=F(x), принимает вид: при любом  > 0 и при n

;

оно, очевидно, выполняется, поскольку интеграл по всей оси, т.е. дисперсия, существует.

Убедимся статистически в том, что сумма нескольких случайных величин распределена приближенно по нормальному закону.

5.2. Одинаково распределенные слагаемые .

Сделаем это на примере суммы

(12)

шести (m = 6) независимых случайных величин, имеющих beta-распределение с параметрами a=b=0.5, плотность которого

, (13)

где - beta-функция. Плотность при выбранных значениях параметров имеет U-образный вид, весьма далекий от нормального; убедимся в этом, построив график плотности .

чтобы статистически оценить закон распределения для суммы S, cследует многократно, N раз (например, N=500), промоделировать суммирование: получим S1, S2,...,SN - выборку для суммы; для этой выборки построим гистограмму и сравним ее визуально с нормальной плотностью.

Подготовим таблицу 9v  500c для размещения шести выборок, а в последних трех - сумм (для числа слагаемых m = 2, 4, 6).

Специфицируем переменные (столбцы):

Vars - All Specs - в окне Variables в столбце Name введем имена слагаемых x1, x2, ... x6 и имена сумм S2, S4, S6, в 4 столбце в первой строке – определяющее выражение

= VBeta (rnd (1); 0.5; 0.5),

эту запись перенесем в строки 26 с помощью операций Copy (кнопка или меню Edit - Copy) и Paste (вставить, кнопка или меню Edit - Copy); запишем выражение

для S2: = x 1 + x2,

для S4: = S2 + x3 + x4,

для S6: = S4 + x5 + x6,

Выполним вычисления:

Сравним гистограммы для m = 1, 2, 4, 6 слагаемых. Получим гистограмму для одного слагаемого:

выделим слагаемое, например, x1 – Quick Stats Graphs (кнопка на левой линейке или меню Graphs- Quick Stats Graphs...) - Histogram of x1 - Normal Fit. Наблюдаем гистограмму и плотность нормального распределения с параметрами, равными выборочным (рис.10). Убеждаемся в существенном отличии распределения слагаемого от нормального. Можно было также действовать через меню Graphs - Stats 2D Graphs - Histogram...

Аналогично получим гистограмму для суммы S2 двух слагаемых, для S4, для S6 (рис.11рис.13). Все 4 графика разместим на одном экране.

Убеждаемся, что уже при шести, даже четырех (!) слагаемых распределение близко к нормальному; подтверждением тому являются значения статистики Колмогорова - Смирнова К - Sd и уровень значимости p, которые указываются на графиках. Выпишем эти значения для всех 4 вариантов, а графики выведем на печать.

Теперь получим аналогичные гистограммы для 2-х, 4-х и 6-ти слагаемых.

Характеристики

Тип файла
Документ
Размер
501 Kb
Тип материала
Высшее учебное заведение

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее