man8full (542547), страница 2

Файл №542547 man8full (Лабораторные работы) 2 страницаman8full (542547) страница 22015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Регрессионный анализ:

Имеем регрессию: product = 11.5 + 1.43 fonds,

соответствующие стандартные ошибки коэффициентов: 2.1 и 0.18; значение s по (7): s = 5.01 (Std Error of estimate - ошибка прогноза выработки по фондам с помощью этой функции). Значение коэффициента детерминации R2 = RI = 0.597 достаточно велико (доля R = 0.77 всей изменчивости объясняется вариацией фондов). Уравнение регрессии показывает, что увеличение основных фондов на 1 млн руб. приводит к увеличению выработки 1 работника в среднем на 1 = 1.43 тыс. руб.

Для удобства интерпретации параметра пользуются коэффициентом эластичности

,

который показывает среднее изменение (в долях или %) зависимой переменной y при изменении фактора х:

.

В нашем случае, Э = 0,579.

Построим регрессию выработки по фондам для более однородной совокупности - для предприятий федерального подчинения (z=1).

Диаграмма рассеяния:

Получаем результаты: Product = 12.55 + 1.44 fonds,

R2 = RI = 0.897, S = 2.68.

Коэффициент детерминации увеличился с 0.597 до 0.897, значение s уменьшилось с 5.01 до 2.68; действительно, подгонка улучшилась.

2. Множественная регрессия

Обобщением линейной регрессионной модели с двумя переменными является многомерная регрессионная модель (или модель множественной регрессии). Пусть n раз измерены значения факторов x1 , x2 , ..., xk и соответствующие значения переменной y; предполагается, что

yi = o + 1xi1 + ... + k xik+ i , i = 1, ..., n, (12)

(второй индекс у х относится к номеру фактора, а первый - к номеру наблюдения); предполагается также, что

Mi = 0, M =  2,

M(i j) = 0, i j, (12a)

т.е. i - некоррелированные случайные величины . Соотношения (12) удобно записывать в матричной форме:

Y = X + , (13)

где Y = (y1, ..., yk)T - вектор-столбец значений зависимой переменной, Т - символ транспонирования,  = (0, 1, ..., k)T - вектор-столбец (размерности k) неизвестных коэффициентов регрессии,  = (1 , ..., n)T - вектор случайных отклонений,

-матрица n (k + 1); в i - й строке (1, xi1, ...,xik) находятся значения независимых переменных в i-м наблюдении первая переменная - константа, равная 1.

Оценка коэффициентов регрессии. Построим оценку для вектора  так, чтобы вектор оценок = Х зависимой переменной минимально (в смысле квадрата нормы разности) отличался от вектора Y заданных значений:

по .

Решением является (если ранг матрицы Х равен k +1) оценка

= (XTX)-1 XTY (14)

Нетрудно проверить, что она несмещенная. Ковариационная (дисперсионная) матрица равна

D = (  ) (  )T =  2 (XTX)1 =  2 Z , (15)

где обозначено Z = (XTX)1.

Справедлива

теорема Гаусса - Маркова. В условиях (12а) оценка (14) является наилучшей (в смысле минимума дисперсии) оценкой в классе линейных несмещенных оценок.

Оценка дисперсии 2 ошибок. Обозначим

e = Y = Y  Х = [I X (XTX)1 XT] Y = BY (16)

вектор остатков (или невязок); B = I X (XTX)1 XT - матрица; можно проверить, что B2 = B. Для остаточной суммы квадратов справедливо соотношение

M = M (n - k -1) 2 ,

откуда следует, что несмещенной оценкой для 2 является

s2 = . (17)

Если предположить, что i в (12) нормально распределены, то справедливы следующие свойства оценок:

1) (n - k - 1) имеет распределение хи квадрат с n-k-1 степенями свободы;

  1. оценки и s2 независимы.

Как и в случае простой регрессии, справедливо соотношение:

или

Tss = Ess + Rss , (18)

в векторном виде:

,

где = ( . Поделив обе части на полную вариацию игреков

Tss = , получим коэффициент детерминации

R2 = (19)

Коэффициент R2 показывает качество подгонки регрессионной модели к наблюдённым значениям yi. Если R2 = 0, то регрессия Y на x1 , ..., xk не улучшает качество предсказания yi по сравнению с тривиальным предсказанием . Другой крайний случай R2 = 1 означает точную подгонку: все ei = 0, т.е. все точки наблюдений лежат на регрессионной плоскости. Однако, значение R2 возрастает с ростом числа переменных (регрессоров) в регрессии, что не означает улучшения качества предсказания, и потому вводится скорректированный (adjusted) коэффициент детерминации

(20)

Его использование более корректно для сравнения регрессий при изменении числа переменных (регрессоров).

Доверительные интервалы для коэффициентов регрессии. Стандартной ошибкой оценки является величина , оценка для которой

sj = , j = 0, 1, ..., k, (21)

где zjj- диагональный элемент матрицы Z. Если ошибки i распределены нормально, то, в силу свойств 1) и 2), приведенных выше, статистика

(22)

распределена по закону Стьюдента с (n - k - 1) степенями свободы, и потому неравенство

tp sj , (23)

где tp - квантиль уровня (1 + PД) / 2 этого распределения, задает доверительный интервал для j с уровнем доверия РД.

Проверка гипотезы о нулевых значениях коэффициентов регрессии. Для проверки гипотезы Н0 об отсутствии какой бы то ни было линейной связи между y и совокупностью факторов, Н0: 1 = 2 = ... = k = 0, т.е. об одновременном равенстве нулю всех коэффициентов, кроме коэффициента 0 при константе, используется статистика

F = = = , (24)

распределенная, если Н0 верна, по закону Фишера с k и n - k - 1 степенями свободы. Н0 отклоняется, если

F > F (k, n - k - 1), (25)

где F - квантиль уровня 1 - .

Отбор наиболее существенных объясняющих переменных. Различные регрессии (с различным набором переменных) можно сравнивать по скорректированному коэффициенту детерминации (20): принять тот вариант регрессии, для которого максимален (подробнее см. в примере).

Пример. Исследуется зависимость урожайности y зерновых культур ( ц/га ) от ряда факторов (переменных) сельскохозяйственного производства, а именно,

х1 - число тракторов на 100 га;

х2 - число зерноуборочных комбайнов на 100 га;

х3 - число орудий поверхностной обработки почвы на 100 га;

х4 - количество удобрений, расходуемых на гектар (т/га);

х5 - количество химических средств защиты растений, расходуемых на гектар (ц/га).

Исходные данные для 20 районов области приведены в табл. 2.

Таблица 2

y

x1

x 2

x 3

x 4

x 5

1

9.7

1.59

.26

2.05

.32

.14

2

8.4

.34

.28

.46

.59

.66

3

9.0

2.53

.31

2.46

.30

.31

4

9.9

4.63

.40

6.44

.43

.59

5

9.6

2.16

.26

2.16

.39

.16

6

8.6

2.16

.30

2.69

.32

.17

7

12.5

.68

.29

.73

.42

.23

8

7.6

.35

.26

.42

.21

.08

9

6.9

.52

.24

.49

.20

.08

10

13.5

3.42

.31

3.02

1.37

.73

11

9.7

1.78

.30

3.19

.73

.17

12

10.7

2.40

.32

3.30

.25

.14

13

12.1

9.36

.40

11.51

.39

.38

14

9.7

1.72

.28

2.26

.82

.17

15

7.0

.59

.29

.60

.13

.35

16

7.2

.28

.26

.30

.09

.15

17

8.2

1.64

.29

1.44

.20

.08

18

8.4

.09

.22

.05

.43

.20

19

13.1

.08

.25

.03

.73

.20

20

8.7

1.36

.26

.17

.99

.42

Здесь мы располагаем выборкой объема n = 20; число независимых переменных (факторов) k = 5. Матрица Х должна содержать 6 столбцов размерности 20; первый столбец состоит из единиц, а столбцы со 2-го по 6-й представлены соответственно столбцами 37 таблицы (файл Harvest 2. sta.). Специальный анализ (здесь не приводимый) технологии сбора исходных данных показал, что допущения (12а) могут быть приняты в качестве рабочей гипотезы, поэтому можем записать уравнения статистической связи между yi и Xi = (xi1, xi2, ..., xi5), i = 1, ..., n в виде (13).

Характеристики

Тип файла
Документ
Размер
2,43 Mb
Тип материала
Высшее учебное заведение

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее