Основы математической теории финансов - Куликов (1187985), страница 9
Текст из файла (страница 9)
à¨á. 24).¨ á®¢ë© á¬ëá«.4.2.3. ¥®à¥¬ë ã¡ ¥®à¥¬ 4.8 ( §«®¦¥¨¥ ã¡ ).ãáâì X == (Xn )n=0,1, ... | (Fn )-ᮣ« ᮢ ë© ¯à®æ¥áá á E|Xn | < ∞ ∀ n.®£¤ X = M + A, £¤¥ A = (An)n=0,1, ..., â ª®©, çâ® A0 = 0 ¨An | Fn -¯à¥¤áª §ã¥¬ë© ¯à®æ¥áá, M | ¬ à⨣ «, ¯à¨ç¥¬¤ ®¥ à §«®¦¥¨¥ ¥¤¨á⢥® á â®ç®áâìî ¤® ¯..®ª § ⥫ìá⢮. (i) ®ª ¦¥¬ ¥¤¨á⢥®áâì.
ãáâìáãé¥áâ¢ãîâ 2 à §«¨çëå ¯à¥¤áâ ¢«¥¨ï, â.¥. X = A + M == A + M . ®£¤ An − An = Mn − Mn ;E(An |Fn−1 ) − E(An |Fn−1 ) = E(Mn |Fn−1 ) − E(Mn |Fn−1 );An − An = Mn−1− Mn−1 ;An − An = M0 − M0 = 0.«¥¤®¢ ⥫ì®, ¤ ë¥ à §«®¦¥¨ï ᮢ¯ ¤ îâ á â®ç®áâì ¯..(ii) ®ª ¦¥¬ áãé¥á⢮¢ ¨¥. ®«®¦¨¬ An = An−1 + E(Xn −− Xn−1 |Fn−1 ), Mn = Xn − An . ¥£ª® ¢¨¤¥âì, çâ® A |¯à¥¤áª §ã¥¬ë© ¯à®æ¥áá. áâ «®áì ¯à®¢¥à¨âì ¢ë¯®«¥¨¥á¢®©á⢠(iii) ¨§ ®¯à¥¤¥«¥¨ï 4.6 ¤«ï ¯à®æ¥áá M :E(Mn |Fn−1 ) = E(Xn |Fn−1 )−An−1 −E(Xn |Fn−1 )+Xn−1 = Mn−1 ,¨á. 24.
§«®¦¥¨¥ ã¡ ¯à¥¤áª §ã¥¬ãî¨ ¬ à⨣ «ìãî á®áâ ¢«ïî騥 ª ¬ë 㦥 § ¥¬, ¥á«¨ Mn | Fn -¬ à⨣ «, â® ¤«ï «î¡®£® n ¢¥à®, çâ®EMn = EM0 .(4.1)®§¨ª ¥â ¢®¯à®á: á®åà ¨âáï «¨ í⮠⮦¤¥á⢮ ¯à¨ ¨§¬¥¥¨¨ ¯®áâ®ï®£® ¬®¬¥â á«ãç ©ë© (᪠¦¥¬, ¬ મ¢áª¨©)¬®¬¥â ¢à¥¬¥¨?«ãç © ï ¢¥«¨ç¨ τ = τ (ω), ¯à¨¨¬ îé ï § ç¥¨ï ¬®¦¥á⢥ {0, 1, . . . , + ∞}, §ë¢ ¥âáï(®â®á¨â¥«ì® 䨫ìâà æ¨¨ Fn ), ¥á«¨¤«ï «î¡®£® n 0 ¢¥à®, çâ® {τ = n} ∈ Fn .
á«ãç ¥ P(τ == ∞) = 0 ¬ મ¢áª¨© ¬®¬¥â §ë¢ ¥âáï. ¬®¬¥â ¢à¥¬¥¨ n ¬ë â®ç® § ¥¬,¯à®¨§®è« «¨ ®áâ ®¢ª τ ¢ ¬®¬¥â ¢à¥¬¥¨ n ¨«¨ ¥â ®á®¢¥ ¨ä®à¬ 樨, ¤®áâ㯮© ª í⮬㠬®¬¥âã.ãáâì Xn | Fn -ᮣ« ᮢ ë© ¯à®æ¥áá ¨ τ | ¬ મ¢áª¨©¯à¥¤¥«¥¨¥ 4.9.¬ મ¢áª¨¬ ¬®¬¥â®¬®¢ª¨à ªâ¨ç¥áª¨© á¬ëá«.¬®¬¥â®¬ ®áâ -« ¢ 4. á«®¢®¥ ¬ ⥬ â¨ç¥áª®¥ ®¦¨¤ ¨¥ ¨ ¬ à⨣ «ë%¬®¬¥â (®â®á¨â¥«ì® 䨫ìâà æ¨¨ Fn ). ¡®§ 稬Xτ (ω) =∞§ 4.2. à⨣ «ë ᫨ ª ⮬㠦¥ P(τ2 τ1 ) = 1, â®Xn (ω)I{τ =n} (ω).n=0®£¤ Xτ | á«ãç © ï ¢¥«¨ç¨ , § 票¥ ª®â®à®© ᮢ¯ ¤ ¥âá® § 票¥¬ ¯®á«¥¤®¢ ⥫ì®á⨠Xn , ®áâ ®¢«¥®© ¢ ¬ મ¢áª¨© ¬®¬¥â ¢à¥¬¥¨ τ .ਬ¥à 4.10.
ãáâì ξ1, ξ2, . . . | .®.à.á.¢., ¨¬¥î騥 á«¥¤ãî饥 à á¯à¥¤¥«¥¨¥: P(ξi = 1) = P(ξi = −1) = 1/2. ®«®¦¨¬ Sn = ξ1 + . . . + ξn , Fn = σ(ξ1 , . . . , ξn ), S0 = 0, F0 = {∅, Ω}.â®â ¯à®æ¥áá §ë¢ ¥âáï ᨬ¬¥âà¨çë¬ á«ãç ©ë¬ ¡«ã¦¤ ¨¥¬ ¨ ï¥âáï ¬ à⨣ «®¬ ®â®á¨â¥«ì® 䨫ìâà æ¨¨ Fn . ¬¥â¨¬, çâ® τa = inf{n 0 : Sn = a}, £¤¥ a ∈ Z, ï¥âáאַ¬¥â®¬ ®áâ ®¢ª¨. ¤ ª® ESτ = a = 0 = ES0 , § ç¨â, à ¢¥á⢮ 4.1 ¥ ¢á¥£¤ ¬®¦® ¯¥à¥¥á⨠¬®¬¥â ®áâ ®¢ª¨.¯à¥¤¥«¥¨¥ 4.11. ª ¦¤®© 䨫ìâà æ¨¥© Fn ¨ ¬®¬¥â®¬ ®áâ ®¢ª¨ τ ¬®¦® á¢ï§ âì σ- «£¥¡àã Fτ á«¥¤ãî饣® ¢¨¤ :Fτ = {A ∈ F : A ∩ {τ = n} ∈ Fn∀ n 0}.à ªâ¨ç¥áª¨© á¬ëá«.
Fn | ¨ä®à¬ æ¨ï, ¤®áâã¯ ï ª ¬®¬¥â㠢६¥¨ n, Fτ | ¬®¦¥á⢮ ᮡë⨩, ® ª®â®àëå ¬ë¬®¦¥¬ ᪠§ âì, ¯à®¨§®è«¨ «¨ ®¨ ¤® ¬®¬¥â ¢à¥¬¥¨ τ ¨«¨¥â. ¬¥ç ¨¥. ¬¥â¨¬, çâ® á«ãç ©ë¥ ¢¥«¨ç¨ë τ, Xτ ïîâáï Fτ -¨§¬¥à¨¬ë¬¨.¥®à¥¬ 4.12 (⥮६ ã¡ ®¡ ®áâ ®¢ª¥).ãáâìX = (Xn )n=0,1, ... ï¥âáï Fn -¬ à⨣ «®¬, τ1 , τ2 | ¬®¬¥âë ®áâ ®¢ª¨, â ª¨¥, çâ®E|Xτi | < ∞, i = 1, 2;lim|Xn |dP = 0.n→∞ {τ >n}2E(Xτ2 |Fτ1 ) = Xτ1 ¬®¦¥á⢥ {τ2 τ1 } P-¯..A∩{τ2 τ1 }Xτ2 dP =A∩{τ2 τ1 }Xτ1 dP.(4.5)«ï ¤®ª § ⥫ìá⢠í⮣® ä ªâ ¤®áâ â®ç® ãáâ ®¢¨âì, ç⮤«ï «î¡®£®n0¢¥à®, çâ®A∩{τ2 τ1 }∩{τ1 =n}Xτ2 dP =¨«¨, çâ® â® ¦¥ á ¬®¥:A∩{τ2 τ1 }∩{τ1 =n}Xτ1 dP,Xτ2 dP =B∩{τ2 n}B∩{τ2 n}Xn dP,(4.6)B = A ∩ {τ1 = n} ∈ Fn .
¬¥¥¬Xn dP =Xn dP +Xn dP =B∩{τ2 n}B∩{τ2 =n}B∩{τ2 >n}Xn dP +E(Xn+1 |Fn )dP ==B∩{τ2 =n}B∩{τ2 >n}Xτ2 dP +Xn+1 dP = . . . ==B∩{τ2 =n}B∩{τ2 n+1}Xτ2 dP +Xm dP.=£¤¥B∩{nτ2 m}âáî¤ Xτ2 dP =¨ ¢ ᨫã (4.2) ¨¬¥¥¬Xτ2 dP = limB∩{τ2 n}B∩{τ2 n}Xn dP −m→∞Xm dP =B∩{τ2 n}Xn dP − limXm dP,B∩{τ2 >m}=B∩{τ2 >m}(4.3)(4.4)®áâ â®ç® ¯®ª § âì, çâ® ¤«ï «î¡®£®¢¥à®, çâ®B∩{τ2 n}®£¤ EXτ2 = EXτ1 .®ª § ⥫ìá⢮.A ∈ Fτ1B∩{nτ2 m}(4.2)%Xn dP −m→∞ B∩{τ >m}2B∩{τ2 >m}Xm dP =B∩{τ2 n}Xn dP,« ¢ 4.
á«®¢®¥ ¬ ⥬ â¨ç¥áª®¥ ®¦¨¤ ¨¥ ¨ ¬ à⨣ «ëçâ® ¤®ª §ë¢ ¥â á®®â®è¥¨¥ (4.6), ®âªã¤ á«¥¤ãîâ á®®â®è¥¨ï, 㪠§ ë¥ ¢ ãá«®¢¨ïå ⥮६ë.%«¥¤á⢨¥ 4.13. ᫨ áãé¥áâ¢ã¥â â ª ï ª®áâ â N ,çâ® P(τ1 N ) = P(τ2 N ) = 1, â® ¢ë¯®«¥ë ãá«®¢¨ï (4.2).®í⮬㠥᫨ X | ¬ à⨣ «, â®EXτ1 = EX0 = EXτ2 = EXN . ᫨ ᥬ¥©á⢮ {Xn } à ¢®¬¥à® ¨â¥£à¨à㥬® ¨ τ | ¬®¬¥â ®áâ ®¢ª¨, â® ãá«®¢¨ï 4.2 â ª¦¥ ¢ë¯®«¥ë.ਬ¥à 4.14. ãáâì Sn | ᨬ¬¥âà¨ç®¥ á«ãç ©®¥ ¡«ã¦-¤ ¨¥, ¢¢¥¤¥®¥ ¢ ¯à¨¬¥à¥ 4.10.
ãáâì b < 0 < a ∈ Z. ®£¤ à áᬮâਬ á«¥¤ãî騩 ¬®¬¥â ®áâ ®¢ª¨ τa∧b = inf{n : Sn == a ¨«¨ Sn = b}. ஢¥à¨¬, çâ® ãá«®¢¨ï ⥮६ë 4.12 ¢ë¯®«¥ë ¤«ï τ1 = 0, τ2 = τa∧b :limn→∞ {τa∧b >n}E|Sτa∧b | a ∧ |b| < ∞;|Sn |dP (a ∧ |b|) lim P(τa∧b > n) n→∞ (a ∧ |b|) lim P(b < Sn < a) = 0n→∞¯® æ¥âà «ì®© ¯à¥¤¥«ì®© ⥮६¥, á«¥¤®¢ ⥫ì®,ESτa∧b = 0,®âªã¤ «¥£ª® ¯®«ãç ¥¬, çâ®P(τa < τb ) =|b|.a + |b| 5¥®à¨ï ࡨâà ¦ ¤ ®© £« ¢¥ à áᬮâ८ ¯®ï⨥ ®âáãâá⢨ï ࡨâà ¦ . ࡨâà ¦ ï ®¯¥à æ¨ï à몥 | ᤥ«ª , ¯® १ã«ìâ â ¬ ª®â®à®© ¬ë ®¡ï§ â¥«ì® ¨ç¥£® ¥ ¯®â¥à塞, ¢ ¥ª®â®àëå á«ãç ïå ®ª ¦¥¬áï ¢ ¯«îá¥.
ᯮ«ì§ãï ¯®ï⨥ ®âáãâá⢨ï ࡨâà ¦ , ¬®¦® ©â¨ ¨â¥à¢ «ë á¯à ¢¥¤«¨¢ëå æ¥¤«ï ¯à®¨§¢®¤ëå æ¥ëå ¡ã¬ £ à몥, § ï ⥪ã騥 æ¥ë¡ §®¢ëå ªâ¨¢®¢ ¨ à á¯à¥¤¥«¥¨¥ ¡ã¤ãé¨å æ¥, â ª¦¥ ¯®á।á⢮¬ æ¥ ®¯æ¨®ë ¯®«ãç¨âì á¯à ¢¥¤«¨¢ë¥ æ¥ë ¤àã£¨å ¯à®¨§¢®¤ëå æ¥ëå ¡ã¬ £.§ 5.1. ਬ¥àë á®®¡à ¦¥¨ï ¡¥§ ࡨâà ¦®áâ¨5.1.1. ¥¤¦¨àã¥¬ë¥ ¯« â¥¦ë¥ ¯®àã票ïãáâì (Ω, F, P) | ¢¥à®ïâ®á⮥ ¯à®áâà á⢮, F |¯« ⥦®¥ ¯®àã票¥ (¯« ⥦®¥ ®¡ï§ ⥫ìá⢮ (contingentclaim)), â.¥. ª®âà ªâ, ª®â®àë© ¢ ¬®¬¥â ¢à¥¬¥¨ T ¯à¨®á¨â ¢« ¤¥«ìæã á㬬㠤¥¥£ F (ω) (F | á«ãç © ï ¢¥«¨ç¨ (Ω, F, P)).d।¯®«®¦¨¬, çâ® F = λi STi , £¤¥ STi | æ¥ i-© ªæ¨¨i=1¢ ¬®¬¥â ¢à¥¬¥¨ T . ®£¤ ¯®ª ¦¥¬, çâ® á¯à ¢¥¤«¨¢ ï æ¥ d¤ ®£® ¯« ⥦®£® ¯®àãç¥¨ï ¡ã¤¥â à ¢ λi S0i .i=1ãáâì x | æ¥ ¯« ⥦®£® ¯®àã票ï F ¢ ¬®¬¥â ¢à¥¬¥¨ 0.d।¯®«®¦¨¬, çâ® x > λi S0i .
®£¤ à áᬮâਬ á«¥¤ãi=1îéãî áâà ⥣¨î: ¢ ¬®¬¥â ¢à¥¬¥¨ 0 ¯®ªã¯ ¥¬ λi ¥¤¨¨æ i-©« ¢ 5. ¥®à¨ï ࡨâà ¦ 74 ªæ¨¨, ¯à®¤ ¥¬ ¯« ⥦®¥ ¯®àã票¥ F ¯® 楥 x, ¢ ¬®¬¥â¢à¥¬¥¨ T § áç¥â ¤¥¥£, ¯®«ãç¥ëå ®â ¯à®¤ ¦¨ ªæ¨©, à ᯫ 稢 ¥¬áï ¯® ¯« ⥦®¬ã ¯®àã票î F . ਡë«ì ®â ¯à®¢¥d¤¥®© áâà ⥣¨¨ á®áâ ¢¨â x −λi S0i > 0, § ç¨â, ¢á¥ ¡ã¤ãâi=1¯ëâ âìáï ¯à¨¬¥¨âì íâã áâà ⥣¨î, çâ® ¯à¨¢¥¤¥â ª ᮮ⢥âáâ¢ãî騬 ¨§¬¥¥¨ï¬ æ¥.dλi S0i .
®£¤ à áᬮâਬ á«¥¤ãî।¯®«®¦¨¬, çâ® x <i=1éãî áâà ⥣¨î: ¢ ¬®¬¥â ¢à¥¬¥¨ 0 ª®à®âª® ¯à®¤ ¥¬ λi ¥¤¨¨æ i-© ªæ¨¨, ¯®ªã¯ ¥¬ ¯« ⥦®¥ ¯®àã票¥ F ¯® 楥 x, ¢¬®¬¥â ¢à¥¬¥¨ T § áç¥â ¤¥¥£, ¯®«ãç¥ëå ®â ¯à¥¤ê¥¨ï¯« ⥦®£® ¯®àã票ï F , ¯®ªã¯ ¥¬ ªæ¨¨ ¨ ¢®§¢à é ¥¬ ¨å¢« ¤¥«ìæã. ਡë«ì ®â ¯à®¢¥¤¥®© áâà ⥣¨¨ á®áâ ¢¨â −x +d+λi S0i > 0, § ç¨â, ¢á¥ ¡ã¤ã⠯ਬ¥ïâì íâã áâà ⥣¨î,i=1çâ® ¯à¨¢¥¤¥â ª ᮮ⢥âáâ¢ãî騬 ¨§¬¥¥¨ï¬ æ¥.ãáâì F | ¯« ⥦®¥ ¯®àã票¥ddF λi STi . ®£¤ (á¯à ¢¥¤«¨¢ ï æ¥ ) x λi S0i .«¥¤á⢨¥ 5.1.i=15.1.2.
¢ãåâ®ç¥ç ï ¬®¤¥«ì¨i=1 ª ç¥á⢥ ¥é¥ ®¤®£® ¯à¨¬¥à à áᬮâਬ ¤¢ãåâ®ç¥çãî ¬®¤¥«ì, ¨¬¥®: ¯ãáâì Ω = {a, b}, P({a}) = p,P({b}) = q = 1 − p, S0 ∈ R, r = 0, S1 :Ω → R, S1 (b) < S0 < S1 (a), F = f (S1 )(á¬. à¨á. 25).¨á. 25. ¢ãåâ®ç¥ç ï¨ á®¢ë© á¬ëá«. St | æ¥ ª¬®¤¥«ì樨 ¢ ¬®¬¥â ¢à¥¬¥¨ t.ãáâì x | ª ¯¨â « ¨¢¥áâ®à ¢ ¬®¬¥â ¢à¥¬¥¨ 0. «¥¥,¯ãáâì ¨¢¥áâ®à ¯®ªã¯ ¥â H ªæ¨©, ®áâ «ìë¥ ¤¥ì£¨ ª« ¤¥â¢ ¡ ª.
®£¤ ¥£® ª ¯¨â « ¢ ¬®¬¥â ¢à¥¬¥¨ 1 ¡ã¤¥â á®áâ ¢«ïâìx + H(S1 − S0 ). áᬮâਬ á¨á⥬ã ãà ¢¥¨© ¤«ï ¯à®¨§¢®«ì-§ 5.2. ¥®à¨ï ࡨâà ¦ ¢ ®¤®è £®¢®© ¬®¤¥«¨ëå (x, H):%#x + H(S1 (a) − S0 ) = F (a),(5.1)x + H(S1 (b) − S0 ) = F (b). ¬¥â¨¬, çâ®, â ª ª ª S1 (b) = S1 (a), ¤ ï á¨á⥬ ¨¬¥¥â¥¤¨á⢥®¥ à¥è¥¨¥ (x∗ , H∗ ), ¨áå®¤ï ¨§ ¨¤¥© ⥮ਨ ࡨâà ¦ , ¢ë᪠§ ëå ¢ ¯®¤à §¤¥«¥ 5.1.1, ¯®«ãç ¥¬, çâ® x∗ |á¯à ¢¥¤«¨¢ ï æ¥ ¯« ⥦®£® ¯®àã票ï F .ãé¥áâ¢ã¥â¢¥à®ïâ®á⮥S0 ∈ (S1 (b), S1 (a)),â®∃!¬¥à S (b) − Sà¥è¥¨¥Q á¨á⥬ë(Ω, F)(5.1):S − S (a)1001, Q({b}) = S (b)).= S0 (Q({a}) = S (b)− S1 (a)− S1 (a)11¥á«¨EQ S1 =â ª ï, ç⮥à Q §ë¢ ¥âáï ¬ à⨣ «ì®© ¬¥à®©, ¨ ¤«ï «î¡®£® ¯« ⥦®£®¯®àã票ïF¨¬¥¥¬x∗ = EQ (x∗ + H∗ (S1 − S0 )),çâ® ¢¨¤® ¨§¢¨¤ à¥è¥¨ï á¨á⥬ë (5.1).§ 5.2.
¥®à¨ï ࡨâà ¦ ¢ ®¤®è £®¢®© ¬®¤¥«¨ áᬮâਬ ⥮à¨î ࡨâà ¦ ¢ ®¤®è £®¢®© ¬®¤¥«¨, â.¥.¬®¤¥«¨ á 2-¬ï ¬®¬¥â ¬¨ ¢à¥¬¥¨:0| ᥣ®¤ï, ª®£¤ ¬ë¬®¦¥¬ ¯à®¢®¤¨âì ª ª¨¥-«¨¡® ®¯¥à 樨, ¨¬ë ã§ ¥¬ ¨å १ã«ìâ â.¯à¥¤¥«¥¨¥ 5.2.1| § ¢âà , ª®£¤ ¤®è £®¢ ï ¬®¤¥«ì| ¡®à(Ω, F, P, S01 , . . . , S0d , S11 , . . . , S1d ), £¤¥ (Ω, F, P) | ¢¥à®ïâ®áâdd®¥ ¯à®áâà á⢮, S0 ∈ R , S1 : Ω → R | á«ãç ©ë© ¢¥ªâ®à.i¨ á®¢ë© á¬ëá«.
Sn | æ¥ i-£® ªâ¨¢ ¢ ¬®¬¥â ¢à¥¬¥¨ n. ãáâì r ∈ R+ | ¡¥§à¨áª®¢ ï ¯à®æ¥â ï áâ ¢ª , â.¥.¯à¨ ¢«®¦¥¨¨ áã¬¬ë ¤¥¥£ x ¢ ¬®¬¥â ¢à¥¬¥¨ 0 ¡¥§à¨áª®¢ë© ¡ ª®¢áª¨© áç¥â ¬ë ¯®«ã稬 ¢ ¬®¬¥â ¢à¥¬¥¨ 1 á㬬㤥¥£ (1 + r)x.¢¥¤¥¬¤®¯®«¨â¥«ì륮¯à¥¤¥«¥¨ï,¥®¡å®¤¨¬ë¥¤«ïà áᬮâ२ï ⥮ਨ ࡨâà ¦ ¢ ®¤®è £®¢®© ¬®¤¥«¨.¯à¥¤¥«¥¨¥ 5.3. ¨áª®â¨à®¢ ï æ¥ Sni| íâ®= (1 + r)n .¯à¥¤¥«¥¨¥ 5.4. âà ⥣¨ï| íâ® ¢¥ªâ®à¨áª®â¨à®¢ ï ¯à¨¡ë«ì áâà ⥣¨¨:di=1S̄ni =H ∈ Rd .H i (S̄1i − S̄0i ).« ¢ 5.
¥®à¨ï ࡨâà ¦ %$¨ á®¢ë© á¬ëá«. ãáâì ¢ ¬®¬¥â ¢à¥¬¥¨ 0 ¬ë ¯®ªã¯ ¥¬ H i ¥¤¨¨æ i-£® ªâ¨¢ . ®£¤ ¤«ï í⮣® ¬ë ¤®«¦ëdd¢§ïâì ¢ ¡ ª¥ á㬬㠤¥¥£ H iS0i = H iS̄0i . ®«ãç ¥¬ ¢i=1i=1¬®¬¥â 1 ®â ¯à®¤ ¦¨ ¯®àâä¥«ï ªæ¨© á㬬㠤¥¥£ H iS1ii=1¨, ¤¨áª®â¨àãï ª ¬®¬¥â㠢६¥¨ 0, ¯®«ãç ¥¬ á«¥¤ãîéã᪮â¨à®¢ ãî ¯à¨¡ë«ì ®â ¯à®¢¥¤¥¨ï ¤ ®© áâà ⥣¨¨:dH i (S̄1i − S̄0i ).di=1¡®§ 票¥. A = { H i(S̄1i − S̄0i ) : H ∈ Rd} | ¬®¦¥á⢮i=1¢á¥¢®§¬®¦ëå ¯à¨¡ë«¥©.¯à¥¤¥«¥¨¥ 5.5.
®¤¥«ìd(Ω, F, P, S01 ,...,S0d , S11 ,...,S1d )㤮¢«¥â¢®àï¥â ãá«®¢¨î ®âáãâá⢨ï ࡨâà ¦ (no-arbitragecondition (N A)), ¥á«¨ A ∩ L0+ = {0}, £¤¥ L0+ = {X −− á«ãç © ï ¢¥«¨ç¨ {Ω, F, P} : P(X 0) = 1}, â.¥.X ∈ A : X 0 P − ¯.. ¨ P(X > 0) > 0,â.¥. ¥ áãé¥áâ¢ã¥â â ª®© áâà ⥣¨¨, çâ® ® ¢á¥£¤ ¯à¨®á¨â¥®âà¨æ ⥫ìë© ¤®å®¤, ¢ ª ª¨å-â® á«ãç ïå | ¯®«®¦¨â¥«ìë© ¤®å®¤.¯à¥¤¥«¥¨¥ 5.6. ª¢¨¢ «¥â®© ¬ à⨣ «ì®© ¬¥à®© §ë¢ ¥âáï ¬¥à Q ∼ P â ª ï, çâ® EQX = 0 ∀ X ∈ A. ¡®§ 稬 ç¥à¥§ M ¬®¦¥á⢮ ¬ à⨣ «ìëå ¬¥à.¯à¥¤¥«¥¨¥ 5.7. ãáâì Q | ¬¥à B(Rd).
®£¤ ®á¨â¥«¥¬ ¬¥àë Q §ë¢ ¥âáïsupp Q = {x ∈ Rd : ∀ ε > 0 Q(Bε (x)) > 0},â.¥. ¬®¦¥á⢮ "§ 稬ëå" â®ç¥ª ¬¥àë Q.¡®§ 稬 ç¥à¥§C = conv supp LawP S̄1§ 5.2. ¥®à¨ï ࡨâà ¦ ¢ ®¤®è £®¢®© ¬®¤¥«¨%%¢ë¯ãª«ãî § ¬ªãâãî ®¡®«®çªã à á¯à¥¤¥«¥¨ï ¢¥ªâ®à S̄1 .®«®¦¨¬ C 0 = ri C | ®â®á¨â¥«ì ï ¢ãâ८áâì ¬®¦¥á⢠C ¢ ®â®á¨â¥«ì®© ⮯®«®£¨¨ ¨¬¥ì襣® «¨¥©®£® ä䨮£® ¯à®áâà á⢠, ᮤ¥à¦ 饣® C .ãáâì S1 ¯à¨¨¬ ¥â á ¯®«®¦¨â¥«ì묨 ¢¥à®ïâ®áâﬨ 2 § 票ï a, b ∈ R2 . ®£¤ C 0 = (a, b) | ¨â¥à¢ « ¢ R2 .®á«¥ ¢¢¥¤¥¨ï ¤ ëå ®¯à¥¤¥«¥¨© áä®à¬ã«¨à㥬 ®á®¢ãî ⥮६ã ⥮ਨ ࡨâà ¦ , ª®â®à ï á¢ï¦¥â íª®®¬¨ç¥áª®¥, ¢¥à®ïâ®á⮥ ¨ £¥®¬¥âà¨ç¥áª®¥ ¯à¥¤áâ ¢«¥¨ï ®¡ ࡨâà ¦¥ ¢ ®¤®è £®¢®© ¬®¤¥«¨.ਬ¥à 5.8.¥®à¥¬ 5.9 (㤠¬¥â «ì ï ⥮६ ⥮ਨ ࡨâà ¦ I ( I (FTAP I))).
«ï ¬®¤¥«¨á«¥¤ãî騥 ãá«®¢¨ï íª¢¨¢ «¥âë:(Ω, F, P, S0 , S1 )a) N A;b) S 0 ∈ C 0 ;c) M = ∅.®ª § ⥫ìá⢮.S0 ∈/C 0,⮣¤ ∃ H ∈a)→b) ®ª ¦¥¬ ®â ¯à®â¨¢®£®. ãáâì(á¬. à¨á. 26):RdH, S̄1 − S̄0 0 P-¯.. ¨ P(H, S̄1 − S̄0 > 0) > 0.b) → c) áᬮâਬ ¬®¦¥á⢮E = {EQ S̄1 : Q ∼ P, EQ |S̄1 | < ∞}.®£¤ E | ¢ë¯ãª«®¥ ¬®¦¥á⢮ ¨ ∀ x ∈ supp Law S̄1 ¨ ∀ ε >> 0 áãé¥áâ¢ã¥â y ∈ E : |y − x| < ε.
«ï í⮣® ¤®áâ â®ç® ¢§¢¥á¨âì 2 ¬¥àë á«¥¤ãî饣® ¢¨¤ : Q1 = 1constP, Q2 = P(·| |S1 −+ |S |1− x| < ε). «¥¤®¢ ⥫ì®, E ⊇ C 0 .c)→a) ®§ì¬¥¬ Q ∈ M. ®£¤ ∀ X ∈ A ¨¬¥¥¬, çâ® EQ X == 0. ç¨â, X ∈ A : X 0 Q-¯.. ¨ Q(X > 0) > 0, á«¥¤®¢ ⥫ì®, â ª ª ª Q ∼ P, â® X ∈ A : X 0 P-¯.. ¨P(X > 0) > 0.. ᫨ S11 , . .