Основы математической теории финансов - Куликов (1187985), страница 12
Текст из файла (страница 12)
ª¦¥ § ¬¥â¨¬, çâ® ¥á«¨ ¢ ª ç¥á⢥ ¬¥àë à¨áª à áᬮâਬ σ(X), â® ¤«ï¥¥ ¢ë¯®«¥ë ¢á¥ ᢮©á⢠ªà®¬¥ (ii) ¨ (iv).ਬ¥à 6.8. áᬮâਬ ¯à¨¬¥àë ª®£¥à¥âëå äãªæ¨©¯®«¥§®áâ¨:(i) u(X) = inf ω∈Ω X(ω).(ii) u(X) = EP X = p(ω)X(ω).ω∈Ω(iii) ¥á«¨ u1 , u2 | ª®£¥à¥âë¥ äãªæ¨¨ ¯®«¥§®áâ¨, â® u1 ∧ u2| ª®£¥à¥â ï äãªæ¨ï ¯®«¥§®áâ¨.(iv) u(X) = P minEP X , £¤¥ P1 , . .
. , Pn | ¬¥àë (Ω, 2Ω )., ..., P¨ á®¢ë© á¬ëá«. ¯ á ¢¥à®ïâ®áâëå ¬¥à ¢ ¯®á«¥¤¥¬¯à¨¬¥à¥ ¯à¥¤áâ ¢«ï¥â ᮡ®© § ¯ á ¢¥à®ïâ®áâëå áæ¥ ਥ¢,1ni§ 6.4. ®£¥à¥âë¥ ¬¥àë à¨áª ¢¥à®ïâ®á⮬ ¯à®áâà á⢥'%¨§ ª®â®àëå ¬ë ¢ë¡¨à ¥¬ ¨åã¤è¨© ¢ á¬ëá«¥ á।¥£® § 票ï. «¥¥ ¬ë ¯®ª ¦¥¬, çâ® ¢á¥ ª®£¥à¥âë¥ äãªæ¨¨ ¯®«¥§®á⨠¬®¦® ¯à¥¤áâ ¢¨âì ¢ â ª®¬ ¢¨¤¥.¥®à¥¬ 6.9 (¥®à¥¬ ® ¯à¥¤áâ ¢«¥¨¨).(i) î¡ ï ª®£¥à¥â ï äãªæ¨ï ¯®«¥§®á⨠¯à¥¤áâ ¢«ï¥âáï¢ ¢¨¤¥u(X) = inf EQ XQ∈D(6.1)á ¥ª®â®àë¬ ¢ë¯ãª«ë¬ § ¬ªãâë¬ ¬®¦¥á⢮¬ ¬¥à D.(ii) ®¦¥á⢮ D á 㪠§ 묨 ᢮©á⢠¬¨ ®¤®§ ç®®¯à¥¤¥«ï¥âáï ¯® ª®£¥à¥â®© äãªæ¨¨ ¯®«¥§®á⨠u.¯à¥¤¥«¥¨¥ 6.10. ®¦¥á⢮ D §ë¢ ¥âáï ®¯à¥¤¥«ïî騬 ¬®¦¥á⢮¬ ¤«ï ª®£¥à¥â®© äãªæ¨¨ ¯®«¥§®á⨠u.®ª § ⥫ìá⢮. (i) ®áâ â®ç®áâì.
¢¥á⢮ (6.1) § -¤ ¥â ª®£¥à¥âãî äãªæ¨î ¯®«¥§®áâ¨, ¨áå®¤ï ¨§ ¯à¨¬¥à 6.8.(i) ¥®¡å®¤¨¬®áâì. áᬮâਬ A = {X ∈ L0 : u(X) 0}.â® ¬®¦¥á⢮ §ë¢ ¥âáï ¬®¦¥á⢮¬ ¯à¨¥¬«¥¬ëå ¯®§¨æ¨©. ä¨ á®¢®© â®çª¨ §à¥¨ï íâ® â¥ ä¨ á®¢ë¥ ¯®§¨æ¨¨,ª®â®àë¥ ï¢«ïîâáï ¡¥§à¨áª®¢ë¬¨ á â®çª¨ §à¥¨ï ª®£¥à¥â®©äãªæ¨¨ ¯®«¥§®á⨠u. ¬¥â¨¬, çâ® A ⊇ L0+ , â ª¦¥ A |¢ë¯ãª«ë©, § ¬ªãâë© ª®ãá, ¨ ∀ X ∈ L0 : ∃ m ∈ R : X −m ∈/ A.¥¯¥àì à áᬮâਬ ¬®¦¥á⢮D = {Q : Q | ¢¥à®ïâ®áâ ï ¬¥à Ω: EQ X 0 ∀ X ∈ A}. ¬¥â¨¬, çâ® ∀ X ∈/ A ∃ Q ∈ D : EQ X < 0. ¥©á⢨⥫ì®,â ª ª ª X ∈/ A, â® ¯® ⥮६¥ { å ®¡ ®â¤¥«¨¬®á⨠¢¯à®áâà á⢥ Rn (á¬. [3]) ∃ a ∈ R, h ∈ Rn+ : x, h < a y, h∀ Y ∈ A, ¨ x = (X(ω1 ), . . . , X(ωn )), y = (Y (ω1 ), .
. . , Y (ωn )). ª ª ª {y, h : Y ∈ A} = R+ ¨«¨ {0}, â® a = 0 ¨ x, h < 0.®à¬¨à㥬 ¢¥ªâ®à h ¨ ¯®«ãç ¥¬ á«¥¤ãîéãî ¢¥à®ïâ®áâãîhi (§ ¬¥â¨¬, çâ® h 0 ∀ i). âáî¤ ¬¥àã Ω : Q(ωi ) = inhii=1¯®«ãç ¥¬, çâ® EQ X =iQ(ωi )X(ωi ) < 0. â® ¦¥ ¢à¥¬ï § ¬¥â¨¬, çâ® EQ Y 0 ∀ Y ∈ A. «¥¤®¢ -« ¢ 6. §¬¥à¥¨¥ à¨áª '&⥫ì®,A={X : EQ X 0}.Q∈D áᬮâਬ äãªæ¨îv(X) = inf EQ X.Q∈D ¬¥â¨¬, çâ®§ 6.5. ®£¥à¥âë¥ ¬¥àë à¨áª ¢¥à®ïâ®á⮬ ¯à®áâà áâ¢¥ãªæ¨ï ρ = −u §ë¢ ¥âáï ª®£¥à¥â®© ¬¥à®© à¨áª .¥®à¥¬ 6.12 (¥®à¥¬ ® ¯à¥¤áâ ¢«¥¨¨ (á¬. [14],[19])).(i) u | ª®£¥à¥â ï äãªæ¨ï ¯®«¥§®á⨠⮣¤ ¨ ⮫쪮⮣¤ , ª®£¤ áãé¥áâ¢ã¥â ¥¯ãá⮥, ¢ë¯ãª«®¥, L1 § ¬ªã⮥ ¬®¦¥á⢮ D ¢¥à®ïâ®áâëå ¬¥à, ¡á®«î⮥¯à¥àë¢ëå ®â®á¨â¥«ì® ¬¥àë P, â ª¨å, çâ®u(X) 0 ⇒ X ∈ A ⇒ ∀ Q ∈ D : EQ X 0 ⇒ v(X) 0;u(X) < 0 ⇒ X ∈/ A ⇒ ∃ Q ∈ D : EQ X < 0 ⇒ v(X) < 0.âáî¤ ¯®«ãç ¥¬, çâ®u(X) 0 ⇔ v(X) 0. ¬¥â¨¬, çâ® v(X) = sup{m : v(X − m) 0}, u(X) == sup{m : u(X − m) 0}.
âªã¤ ¯®«ãç ¥¬, çâ® u(X) = v(X),çâ® ¨ âॡ®¢ «®áì ¤®ª § âì.(ii) á«¥¤ã¥â ¨§ ⥮६ë { å ®¡ ®â¤¥«¨¬®áâ¨.§ 6.5. ®£¥à¥âë¥ ¬¥àë à¨áª ¯à®¨§¢®«ì®¬¢¥à®ïâ®á⮬ ¯à®áâà á⢥ãáâì (Ω, F, P) | ¯à®¨§¢®«ì®¥ ¢¥à®ïâ®á⮥ ¯à®áâà á⢮. ¯à¥¤¥«¨¬ ¥¬ ª®£¥à¥âãî äãªæ¨î ¯®«¥§®áâ¨.ãªæ¨ï u : L∞ → R §ë¢ ¥âá类£¥à¥â®© äãªæ¨¥© ¯®«¥§®á⨠(coherent utility function),¥á«¨ ¤«ï ¥¥ ¢ë¯®«¥ë á«¥¤ãî騥 ᢮©á⢠:(i) (᢮©á⢮ ¤¨¢¥àá¨ä¨ª 樨) u(X + Y ) u(X) + u(Y )∀ X, Y ∈ L∞ ;(ii) (ç áâ¨ç®¥ ®â®è¥¨¥ ¯®à浪 ) X Y P-¯.. →→ u(X) u(Y );(iii) (¥®âà¨æ ⥫ì ï ®¤®à®¤®áâì) u(λX) = λu(X) ∀ X ∈∈ L∞ , λ 0;(iv) (¨¢ ਠâ®áâì ®â®á¨â¥«ì® ᤢ¨£ ) u(X + m) = u(X) ++ m ∀ X ∈ L∞ , m ∈ R.(v) (᢮©á⢮ âã) ∀ Xn ∈ L∞ : ||Xn ||∞ 1 ¨¬¥¥¬u(X) lim u(Xn ).¯à¥¤¥«¥¨¥ 6.11.n→∞''u(X) = inf EQ X.(ii) ®¦¥á⢮Q∈D(6.2)D á 㪠§ 묨 ᢮©á⢠¬¨ ®¤®§ ç®®¯à¥¤¥«ï¥âáï ¯® ª®£¥à¥â®© äãªæ¨¨ ¯®«¥§®á⨠u.¯à¥¤¥«¥¨¥ 6.13.D®¯à¥¤¥«ïî騬 ¬®¦¥á⢮¬u®¦¥á⢮ §ë¢ ¥âáï¤«ï ª®£¥à¥â®© äãªæ¨¨ ¯®«¥§®á⨠.«¥¤á⢨¥ 6.14.{Q : Q − ¢¥à®ïâ®áâ ï ¬¥à , Q P} ↔↔ {Z : Z − á«ãç © ï ¢¥«¨ç¨ (Ω, F, P), Z 0, EP Z = 1}. áᬮâਬ ¯à¨¬¥àë ¬¥à à¨áª ¨ ©¤¥¬ "¡«¨¦ ©è¨©" ª®£¥à¥âë© «®£ V aR.ਬ¥à 6.15 (á¬.
[13]). áᬮâਬ á«¥¤ãîéãî äãªæ¨î ¯®«¥§®áâ¨u1λ (X) = E(X|X qλ (X)).(6.3) ï äãªæ¨ï ¯®«¥§®á⨠¥ ï¥âáï ª®£¥à¥â®©. áᬮâਬ ¢¥à®ïâ®á⮥ ¯à®áâà á⢮ (Ω, F, P), £¤¥ Ω == {ω1 , ω2 , ω3 }. F = 2Ω , P(ω1 ) = P(ω2 ) = 1/4, P(ω3 ) = 1/2.ãáâì á«ãç ©ë¥ ¢¥«¨ç¨ë X, Y â ª¨¥, çâ® X(ω1) = Y (ω1) == 0, X(ω2 ) = X(ω3 ) = 1, Y (ω2 ) = 1.1, Y (ω3 ) = 100.
®£¤ X Y P-¯.., ® ¤«ï λ ∈ (1/4, 1/2] ¢¥à®, çâ® u1λ (X) = 2/3 >> u1λ (Y ) = 0.55.஡«¥¬ § ª«îç ¥âáï ¢ ⮬, ç⮠⮬ à á¯à¥¤¥«¥¨ï X¬®¦¥â ¡ëâì ¢ qλ(X). ᫨ ¢á¥ á«ãç ©ë¥ ¢¥«¨ç¨ë ¨¬¥î⠡᮫îâ® ¥¯à¥à뢮¥ à á¯à¥¤¥«¥¨¥, â® ¢á¥ ªá¨®¬ë ¢ë¯®«¥ë ¤«ï u1λ.ਬ¥à 6.16.®áâ¨:« ¢ 6. §¬¥à¥¨¥ à¨áª áᬮâਬ á«¥¤ãîéãî äãªæ¨î ¯®«¥§-(6.4) ï äãªæ¨ï ¯®«¥§®á⨠ï¥âáï ª®£¥à¥â®© (á¬. [13]).¤ ª® ® § ¢¨á¨â ¥ ⮫쪮 ®â à á¯à¥¤¥«¥¨ï á«ãç ©®© ¢¥«¨ç¨ë X , ® ¨ ®â ¢¥à®ïâ®á⮣® ¯à®áâà á⢠, çâ® ¥ ®ç¥ì㤮¡® á â®çª¨ §à¥¨ï ¯à¨¬¥¥¨ï ¯à ªâ¨ª¥. ⥯¥àì à áᬮâਬ ¥é¥ ®¤¨ «®£ V aR, «¨è¥ë© íâ¨å¥¤®áâ ⪮¢.¯à¥¤¥«¥¨¥ 6.17 (á¬. [14]).
ãáâì λ ∈ [0, 1]. ®£¤ u2λ (X) = inf{EIA X : P(A) λ}.墮á⮢®© V aR (Tail V aR, Average V aR, expected shortfall)| íâ® ª®£¥à¥â ï ¬¥à à¨áª , ᮮ⢥âáâ¢ãîé ï á«¥¤ãî饬㮯।¥«ïî饬㠬®¦¥áâ¢ã:Dλ = {Q : Q P,®£¤ dQ λ−1 }.dP(6.5) ¬¥ç ¨ï. (i) ᫨ λ = 0, â® uλ(X) = u0(X) = ess inf X .(ii) ᫨ ¯à®áâà á⢮ (Ω, F, P) ¥ ¨¬¥¥â ⮬®¢ (¬®¦¥á⢮A ∈ F §ë¢ ¥âáï ⮬®¬ ¯® ¬¥à¥ P, ¥á«¨ P(A) > 0 ¨¤«ï «î¡®£® B ⊆ A, B ∈ F ¢¥à®, çâ® P(B) = P(A) ¨«¨P(B) = 0) ¨ äãªæ¨ï à á¯à¥¤¥«¥¨ï á«ãç ©®© ¢¥«¨ç¨ëX ¥¯à¥àë¢ , â®uλ (X) = inf EQ X.Q∈Dλuλ (X) = u1λ (X) = u2λ (X) = λ−1(iii) ®¡é¥¬ á«ãç ¥qλ (X)−∞xdFX (x).uλ (X) = inf EQ X = EQ∗λ (X) X,Q∈D룤¥dQ∗λ (X)dP£¤¥⎧⎨ 1/λ= c⎩0 ¬®¦¥á⢥ {X < qλ (X)}; ¬®¦¥á⢥ {X = qλ (X)}; ¬®¦¥á⢥ {X > qλ (X)},cP(X = qλ (X)) +1P(X < qλ (X)) = 1.λ§ 6.5.
®£¥à¥âë¥ ¬¥àë à¨áª ¢¥à®ïâ®á⮬ ¯à®áâà á⢥ ®í⮬㠢 ®¡é¥¬ á«ãç ¥uλ (X) u2λ (X) u1λ (X).¤ ª® 墮á⮢®© V aR ®¡« ¤ ¥â à冷¬ ¥¡®«ìè¨å ¥¤®áâ ⪮¢, â ª ª ª ® ¯®ª §ë¢ ¥â ⮫쪮, ᪮«ìª® ¯®§¨æ¨ï¯«®å § ã஢¥¬ qλ(X), ® ¨ç¥£® ¥ £®¢®à¨â ® ¥¥ á®áâ ¢«ïî饩, ª®â®à ï ¢ëè¥ qλ(X).¯à¥¤¥«¥¨¥ 6.18. ãáâì μ | ¢¥à®ïâ®áâ ï ¬¥à [0, 1]. ®£¤ ¢§¢¥è¥ë© V aR (Weighted V aR) | íâ® ª®£¥à¥â ï ¬¥à à¨áª , ᮮ⢥âáâ¢ãîé ï á«¥¤ãî饩 ª®£¥à¥â®©äãªæ¨¨ ¯®«¥§®áâ¨:1(6.6) ¦®áâì 墮á⮢®£® ¨ ¢§¢¥è¥®£® V aR á«¥¤ã¥â ¨§ á«¥¤ãîé¨å ¨¦¥ ®¯à¥¤¥«¥¨ï ¨ ¤¢ãå ⥮६, à áᬮâà¥ëå ¢à ¡®â¥ [23].¯à¥¤¥«¥¨¥ 6.19. ®£¥à¥â ï äãªæ¨ï ¯®«¥§®á⨠u §ë¢ ¥âáï ¨¢ ਠ⮩ ¯® à á¯à¥¤¥«¥¨î, ¥á«¨ ∀ X Law= Y¢¥à®, çâ®uμ (X) =0uλ (X)μ(dλ).u(X) = u(Y ),â.¥.
¥á«¨ ¯à¨¡ë«¨ ®â ä¨ á®¢ëå ¯®§¨æ¨© ¨¬¥îâ ®¤¨ ª®¢®¥à á¯à¥¤¥«¥¨¥, â® ¨ à¨áª ®â ®¡« ¤ ¨ï ª ¦¤®© ¨§ ¨å ®¤¨ ª®¢.¥®à¥¬ 6.20.ãáâì (Ω, F, P) | ¢¥à®ïâ®á⮥ ¯à®áâà á⢮ ¡¥§ ⮬®¢. ®£¤ u | ª®£¥à¥â ï äãªæ¨ï ¯®«¥§®áâ¨, ¨¢ ਠâ ï ¯® à á¯à¥¤¥«¥¨î ⮣¤ ¨ ⮫쪮⮣¤ , ª®£¤ áãé¥áâ¢ã¥â M | ¬®¦¥á⢮ ¢¥à®ïâ®áâë嬥à [0, 1], â ª®¥, çâ®u(X) = inf uμ (X).μ∈M ª¨¬ ®¡à §®¬, ®á®¢¥ ¢§¢¥è¥ëå V aR ¬®¦® ¯®áâநâì ¢á¥ ¨¢ ਠâë¥ ¯® à á¯à¥¤¥«¥¨î ª®£¥à¥âë¥ ¬¥àëà¨áª .« ¢ 6.
§¬¥à¥¨¥ à¨áª ¥®à¥¬ 6.21. ãáâì (Ω, F, P) | ¢¥à®ïâ®á⮥ ¯à®áâà á⢮ ¡¥§ ⮬®¢. ãáâì u | ª®£¥à¥â ï äãªæ¨ï ¯®«¥§®áâ¨, ¨¢ ਠâ ï ¯® à á¯à¥¤¥«¥¨î, â ª ï, çâ®∃ λ ∈ [0, 1] :®£¤ u(X) uλ(X).∀ X ∈ L∞ :u(X) qλ (X).«¥¤®¢ ⥫ì®, 墮á⮢®© V aR | ¬¨¨¬ «ì ï ¨¢ ਠâ ï ¯® à á¯à¥¤¥«¥¨î ª®£¥à¥â ï ¬¥à à¨áª , ¤®¬¨¨àãîé ï V aR.¨â¥à âãà .®¤¨ ., ¥àâ® .¨ áë / ¯¥à. á £«. .: ¨«ìï¬á, 2007.592 á.2.㫨᪨© . ., ¨à異 . .¥®à¨ï á«ãç ©ëå ¯à®æ¥áᮢ..: ¨§¬ ⫨â, 2005. 408 á.3.®¡¥àâá® ., ®¡¥àâá® .®¯®«®£¨ç¥áª¨¥¢¥ªâ®à륯à®-áâà á⢠.
.: ¨à, 1967. 257 á.4. «« ¦. .¯æ¨®ë, äìîç¥àáë ¨ ¤à㣨¥ ¯à®¨§¢®¤ë¥ ä¨- á®¢ë¥ ¨áâà㬥âë / ¯¥à. á £«. 6-¥ ¨§¤. .: ¨«ìï¬á, 2008.1024 á.5.¥««ì¬¥à ., ¨¤ .¢¥¤¥¨¥ ¢ áâ®å áâ¨ç¥áª¨¥ ä¨ áë. ¨á-ªà¥â®¥ ¢à¥¬ï / ¯¥à. á £«. . ¨èãàë, . ¥¢ç¥ª®, . ન . .: , 2008.
496 á.6.¥àë© . . 宦¤¥¨¥ á¯à ¢¥¤«¨¢®© æ¥ë ®á®¢¥ ª®£¥-à¥âëå ¬¥à à¨áª // ¥®à¨ï ¢¥à®ïâ®á⥩ ¨ ¥¥ ¯à¨¬¥¥¨ï.2007. . 52, ¢ë¯. 3. . 506{540.7.¥àë© . . ¢®¢¥á¨¥ ®á®¢¥ ª®£¥à¥âëå ¬¥à à¨áª : ¯à¥-¯à¨â, ¤®áâ㯥 á ©â¥http://mech.math.msu.su/~cherny.8.¨à異 . .ᮢë áâ®å áâ¨ç¥áª®© ä¨ á®¢®© ¬ ⥬ ⨪¨. 2-å â. .: §¤-¢® §¨á, 1998, 2004.
. 1 { 512 á., . 2 { 544 á.9.¨à異 . .¥à®ïâ®áâì. 2-å â. §¤. 3-¥, ¯¥à¥à ¡. ¨ ¤®¯. .:§¤-¢® , 2004. . 1 { 520 á., . 2 { 408 á.10.11.¤¢ à¤á .Acerbi C.ãªæ¨® «ìë© «¨§. .: ¨à, 1969. 1071 á.Spectral measures of risk:a coherent representation ofsubjective risk aversion // Journal of Banking and Finance. 2002.V. 26, N 7. P.
1505{1518.12.Acerbi C., Tasche D.On the coherence of expected shortfall // Jour-nal of Banking and Finance. 2002. V. 26, N 7. P. 1487{1503.13.Artzner P., Delbaen F., Eber J.-M., Heath D.Thinking coherently// Risk. 1997. V. 10, N 11, P. 68{71.14.Artzner P., Delbaen F., Eber J.-M., Heath D.Coherent measures ofrisk // Mathematical Finance. 1999. V. 9, N 3. P. 203{228.15.Bachelier L.1900. 70 p.Theorie de la speculation. Thesis,Gauthier-Villars, "#%"# ¨â¥à âãà Black F., Scholes S.
! " #$%Cherny A. S. & V aR ' ( ! ) * #$##Cox J. C., Ross S. A. + , - (. - ' ! $ #Delbaen F. / , 01201345http://www.math.ethz.ch/~delbaen) 067 489:8432; < = >Grothendick A. ? *@ AB=C=,D E) # % Harrison J. M., Kreps D. M. F = B ! ) * # #"$ "Jouini E., Schachermayer W., Touzi N. C@ ? B ? ' -? F ! ) * $Kusuoka S. + @ ? B -? F ! # "#$%Merton R. C. G + E F ( H G-*I /J# ! ) * $"#Markowitz H. ' % ! ) * $Nikodym O. ( F GH 'J ' F # ! % #$Samuelson P. A.
G @ KF G?@ % ! #$#Sharpe W. F. - (. F - F= ( # ! ) * $ #Shreve S. ( . ! K, E -= F ! KK, /= F *@ AB,(=!)Tasche D. L EB ' ! ) * %$%##祡®¥ ¨§¤ ¨¥ã«¨ª®¢ «¥ªá ¤à « ¤¨¬¨à®¢¨ç ¥¤ ªâ®à .. ®â®¢ . ®à४â®à .. ¥¡®¢ ®¤¯¨á ® ¢ ¯¥ç âì 15.09.2013. ®à¬ â 60 × 84 1/16. á«. ¯¥ç. «. 7,2.ç.-¨§¤.
«. 6,5. ¨à ¦ 300 íª§. ª § ü 257.¥¤¥à «ì®¥ £®á㤠àá⢥®¥ ¢â®®¬®¥ ®¡à §®¢ ⥫쮥 ãç०¤¥¨¥¢ëá襣® ¯à®ä¥áᨮ «ì®£® ®¡à §®¢ ¨ïý®áª®¢áª¨© 䨧¨ª®-â¥å¨ç¥áª¨© ¨áâ¨âãâ (£®á㤠àáâ¢¥ë© ã¨¢¥àá¨â¥â)þ141700, ®áª®¢áª ï ®¡«., £. ®«£®¯àã¤ë©, áâ¨âãâ᪨© ¯¥à., 9¥«. (495) 408{58{22, e-mail: rio@mail.mipt.ru⤥« ®¯¥à ⨢®© ¯®«¨£à 䨨 ý¨§â¥å-¯®«¨£à äþ141700, ®áª®¢áª ï ®¡«., £. ®«£®¯àã¤ë©, áâ¨âãâ᪨© ¯¥à., 9¥«. (495) 408{84{30, e-mail: polygraph@mail.mipt.ru.