Главная » Просмотр файлов » Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008)

Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 32

Файл №1185330 Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008).pdf) 32 страницаЕ. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330) страница 322020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 32)

FK ·Û‰ÂÚ ÏÂÚËÍÓÈ, ÂÒÎË ÏÌÓ„ÓÓ·‡ÁË Mn ÚÛ„ÓÂ, Ú.Â. (∆, Mn ) fl‚ÎflÂÚÒflÌÓχθÌ˚Ï ÒÂÏÂÈÒÚ‚ÓÏ.140ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflèÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„ÓÔÓÎÛ‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë) K M n ̇ Mn , ÍÓÚÓÓÂÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ. ÑÎfl Á‡‰‡ÌÌ˚ı p, q ∈ Mn ˆÂÔ¸ ‰ËÒÍÓ‚ α ÓÚ  ‰Ó qÂÒÚ¸ ÒÂÏÂÈÒÚ‚Ó ÚÓ˜ÂÍ p = p 0 , p1 ,..., p k = q ËÁ Mn , Ô‡ ÚÓ˜ÂÍ a1 , b1 ;...; a k , b k ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ Ë ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f1, ..., fk ËÁ ∆ ‚ Mn , Ú‡ÍËı ˜ÚÓf j ( a j ) = p j −1 Ë f j (b j ) = p j ‰Îfl ‚ÒÂı j . ÑÎË̇ l(a) ˆÂÔË α ‡‚̇ d p ( a1 , b1 ) + ......

+ d p ( a k , b k ), „‰Â dp ÂÒÚ¸ ÏÂÚË͇ èÛ‡Ì͇Â. èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë K M n ̇Mn – ˝ÚÓ ÔÓÎÛÏÂÚË͇ ̇ Mn , Á‡‰‡Ì̇fl ͇ÍK M n ( p, q ) = inf l(α ),α„‰Â ËÌÙËÏÛÏ ‚ÁflÚ ÔÓ ‚ÒÂÏ ‰ÎËÌ‡Ï l(α) ˆÂÔÂÈ ‰ËÒÍÓ‚ α ÓÚ  ‰Ó q.èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡Ë·Óθ¯‡fl ËÁ ‚ÒÂı ÔÓÎÛÏÂÚËÍ Ì‡ M n , ÍÓÚÓ˚Âfl‚Îfl˛ÚÒfl ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ ËÁ ∆ ‚Mn , „‰Â ‡ÒÒÚÓflÌËfl ̇ ∆ ËÁÏÂfl˛ÚÒfl ‚ ÏÂÚËÍ èÛ‡Ì͇Â. K ∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈèÛ‡Ì͇Â, a K n ≡ 0.åÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ äÓ·‡È‡¯Ë, ÂÒÎË ÔÓÎÛ‡ÒÒÚÓflÌËÂäÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ̇ ÌÂÏ ÏÂÚËÍÓÈ.

åÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓäÓ·‡È‡¯Ë ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ·Ë„ÓÎÓÏÓÙÌÓ Ó„‡Ì˘ÂÌÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ Ó·Î‡ÒÚË.åÂÚË͇ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇èÓÎÛÏÂÚËÍÓÈ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‰‚‡Ê‰˚ ‰‚ÓÈÒÚ‚ÂÌÌ˚È Ó·‡Á ÔÓÎÛÏÂÚËÍË äÓ·‡È‡¯Ë ̇ Mn . é̇ fl‚ÎflÂÚÒflÏÂÚËÍÓÈ, ÂÒÎËMn – ÚÛ„Ó ÏÌÓ„ÓÓ·‡ÁËÂ.åÂÚË͇ ä‡‡ÚÂÓ‰ÓËèÛÒÚ¸ D ·Û‰ÂÚ Ó·Î‡ÒÚ¸ ‚ n, Ë (D, ∆) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: D → ∆, „‰Â ∆ = {z ∈ | z |< 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ.åÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË Fë ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl ͇ÍFC ( z, u) = sup{ f ′( z )u : f ∈ ( D, ∆ )}‰Îfl β·˚ı z ∈ D Ë u ∈ n.

é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇ ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË. FC ( z, u) ≤ FK ( z, u), „‰Â FK – ÏÂÚË͇ äÓ·‡È‡¯Ë. ÖÒÎË D ‚˚ÔÛÍÎa Ëud ( z, u)d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ≤ FC ( z, u) = FK ( z, u) ≤ d ( z, u).α2ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M n ÔÓÎÛÏÂÚË͇ ä‡‡ÚÂÓ‰ÓË FC ÓÔ‰ÂÎflÂÚÒfl͇Í{}FC ( p, u) = sup f ′( p)u : f ∈ ( M n , ∆ )‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ Tp (M n ). FC fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË Mn – ÚÛ„ÓÂ.èÓÎÛ‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË) C M fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ Ì‡ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n , Á‡‰‡ÌÌÓÈ Í‡Í{}CM n ( p, q ) = sup d P ( f ( p), f (q )) : f ∈ ( M n , ∆ ) ,É·‚‡ 7.

êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË141„‰Â dP – ÏÂÚË͇ èÛ‡Ì͇Â. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ËÌÚ„‡Î¸Ì‡fl ÔÓÎÛÏÂÚË͇ ‰Îfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏ˚ ÔÓÎÛÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ‰Îfl ÔÓÎÛ‡ÒÒÚÓflÌËfl ä‡‡ÚÂÓ‰ÓË, ÌÓ Ì ÒÓ‚Ô‡‰‡ÂÚ Ò ÌËÏ.èÓÎÛ‡ÒÒÚÓflÌË ä‡‡ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡ËÏÂ̸¯‡fl ÔÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËfl.

ë∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â, ‡ CC n ≡ 0.åÂÚË͇ ÄÁÛ͇‚˚èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ C n . èÛÒÚ¸ g D ( z, u) = sup{ f (u) : f ∈ K D ( z )}, „‰Â K D(z) –ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f: D → [0,1),Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 Ò F(u) ≤ M|| u – z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D : ; Á‰ÂÒ¸{}|| ⋅ || – l2-ÌÓχ ̇ n, a B( z, r ) = x ∈ n : || z − x 2 ||2 < r .åÂÚË͇ ÄÁÛ͇‚˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) F A ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡fl ÏÂÚË͇, ÓÔ‰ÂÎflÂχfl ͇ÍFA ( z, u) = lim supλ→01gD ( z, z + λ )|λ|‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n.

é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈäÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n. ÖÒÎË Ó·Î‡ÒÚ¸ D‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú.åÂÚË͇ ÄÁÛ͇‚˚ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ÄÁÛ͇‚˚.åÂÚË͇ ëË·ÓÌËèÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ ën . èÛÒÚ¸ KD(z) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f : D → [0,1), Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 cf (u) ≤ M || u − z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D; Á‰ÂÒ¸ || ⋅ || 2 – l2 -ÌÓχ ̇ n, a B( z, r ) ={}2( z ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ Í·ÒÒ‡ C 2 ‚= x ∈ n : || z − x ||2 < r . èÛÒÚ¸ ClocÌÂÍÓÚÓÓÈ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË z.åÂÚË͇ ëË·ÓÌË (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) FS ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏFS ( z, u) =sup2(z )f ∈K D (z ) ∩ Cloc∑i, j∂2 f( z )ui u j∂z i ∂z j‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n .

é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈäÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FS ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n , „‰Â FAÂÒÚ¸ ÏÂÚË͇ ÄÁÛ͇‚˚. ÖÒÎË Ó·Î‡ÒÚ¸ D ‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú.åÂÚË͇ ëË·ÓÌË fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ëË·ÓÌË.åÂÚË͇ ÇÛåÂÚËÍÓÈ ÇÛ WM n ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛ ˝ÏËÚÓ‚‡ ÏÂÚË͇ ̇ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ.

àÏÂÌÌÓ, ‰Îfl ‰‚Ûı n-ÏÂÌ˚ı ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„Ó-142ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflÓ·‡ÁËÈ M1n Ë M2n Ë WM n ( f ( p), f (q ) ≤ nWM n ( p, q ) ÌÂ‡‚ÂÌÒÚ‚Ó ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl21‚ÒÂı p, q ∈ M1n .àÌ‚‡ˇÌÚÌ˚ ÏÂÚËÍË, ‚Íβ˜‡fl ÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË, äÓ·‡È‡¯Ë, ÅÂ„χ̇ ËäÂıÎÂ‡–ùÈ̯ÚÂÈ̇, Ë„‡˛Ú ‚‡ÊÌÛ˛ Óθ ‚ ÚÂÓËË ÍÓÏÔÎÂÍÒÌ˚ı ÙÛÌ͈ËÈ Ë‚˚ÔÛÍÎÓÈ „ÂÓÏÂÚËË. åÂÚËÍË ä‡‡ÚÂÓ‰ÓË Ë äÓ·‡È‡¯Ë ÔËÏÂÌfl˛ÚÒfl ‚ ÓÒÌÓ‚ÌÓÏËÁ-Á‡ Ò‚ÓÈÒÚ‚‡ ÛÏÂ̸¯ÂÌËfl ‡ÒÒÚÓflÌËfl, ÌÓ ÓÌË ÔÓ˜ÚË ÌËÍÓ„‰‡ Ì fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÏÂÚË͇ ÅÂ„χ̇ Ë ÏÂÚË͇ äÂıÎÂ‡–ùÈ̯ÚÂÈ̇ fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË (·ÓΠÚÓ„Ó, ÏÂÚË͇ÏË äÂıÎÂ‡), Ӊ̇ÍÓ Ó·˚˜ÌÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÏÂÚË͇ÏË, ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl.åÂÚË͇ íÂÈıÏ˛ÎÎÂ‡êËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ R ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ.т ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË R1 Ë R2 ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎËÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂÍÚ˂̇fl ‡Ì‡ÎËÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl (Ú.Â.

ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ)ËÁ R 1 ‚ R2 . íÓ˜ÌÂÂ, ‡ÒÒÏÓÚËÏ Á‡ÏÍÌÛÚÛ˛ ËχÌÓ‚Û ÔÓ‚ÂıÌÓÒÚ¸ R0 ‰‡ÌÌÓ„ÓÓ‰‡ g ≥ 2. ÑÎfl Á‡ÏÍÌÛÚÓÈ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R Ó‰‡ ÔÓÒÚÓËÏ Ô‡Û (R, f),„‰Â f: R0 → R – „ÓÏÂÓÏÓÙËÁÏ. т ԇ˚ (R, f) Ë (R1 , f 1 ) ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ h: R → R1 ,Ú‡ÍÓÈ ˜ÚÓ ÓÚÓ·‡ÊÂÌË ( f1 ) −1 ⋅ h ⋅ f : R0 → R0 „ÓÏÓÚÓÔÌÓ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲.Ä·ÒÚ‡ÍÚ̇fl ËχÌÓ‚‡ ÔÓ‚ÂıÌÓÒÚ¸ R* = ( R, f )* – ˝ÚÓ Í·ÒÒ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË‚ÒÂı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı R. åÌÓÊÂÒÚ‚Ó ‚ÒÂıÍ·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ íÂÈıÏ˛ÎÎÂ‡ T(R0 ) ÔÓ‚ÂıÌÓÒÚË R0 .

ÑÎfl Á‡ÏÍÌÛÚ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ R0 ‰‡ÌÌÓ„Ó Ó‰‡ g ÔÓÒÚ‡ÌÒÚ‚‡ T(R0 )fl‚Îfl˛ÚÒfl ËÁÓÏÂÚ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË, ˜ÚÓ ÔÓÁ‚ÓÎflÂÚ „Ó‚ÓËÚ¸ Ó ÔÓÒÚ‡ÌÒÚ‚ÂíÂÈıÏ˛ÎÎÂ‡ Tg ÔÓÒÚ‡ÌÒÚ‚ Ó‰‡ g. T g ÂÒÚ¸ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. ÖÒÎË R 0ÔÓÎÛ˜ÂÌÓ ËÁ ÍÓÏÔ‡ÍÚÌÓÈ ÔÓ‚ÂıÌÓÒÚË Ó‰‡ g ≥ 2 ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl n ÚÓ˜ÂÍ, ÚÓÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ T g ‡‚̇ 3g – 3 + n.åÂÚË͇ íÂÈıÏ˛ÎÎÂ‡ – ˝ÚÓ ÏÂÚË͇ ̇ Tg , ÓÔ‰ÂÎÂÌ̇fl ͇Í1inf ln K (h)2 h‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 ÂÒÚ¸ Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ,„ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ K(h) – χÍÒËχθÌ ‡ÒÚflÊÂÌˉÎfl h.

àÏÂÌÌÓ, ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ ˝ÍÒÚÂχθÌÓ ÓÚÓ·‡ÊÂÌËÂ, ̇Á˚‚‡ÂÏÓÂÓÚÓ·‡ÊÂÌËÂÏ íÂÈıÏ˛ÎÎÂ‡, ÍÓÚÓÓ ÏËÌËÏËÁËÛÂÚ Ï‡ÍÒËχθÌÓ ‡ÒÚflÊÂÌËÂ1‰Îfl ‚ÒÂı Ú‡ÍËı h, Ë ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ‡‚ÌÓ ln K , „‰Â ÍÓÌÒÚ‡ÌÚ‡ ä fl‚Îfl2ÂÚÒfl ‡ÒÚflÊÂÌËÂÏ ÓÚÓ·‡ÊÂÌËfl íÂÈıÏ˛ÎÎÂ‡.Ç ÚÂÏË̇ı ˝ÍÒÚÂχθÌÓÈ ‰ÎËÌ˚ ext R* ( γ ) ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ÏÓÊÌÓÁ‡ÔËÒ‡Ú¸ ͇Íext R* ( γ )11ln sup,2γ ext R * ( γ )2„‰Â ÒÛÔÂÏÛÏ „‡Ì¸ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒÚ˚Ï Á‡ÏÍÌÛÚ˚Ï ÍË‚˚Ï Ì‡ R0 .É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË143èÓÒÚ‡ÌÒÚ‚Ó íÂÈıÏ˛ÎÎÂ‡ Tg Ò ÏÂÚËÍÓÈ íÂÈıÏ˛ÎÎÂ‡ ̇ ÌÂÏ fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (·ÓΠÚÓ„Ó, ÔflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ),Ӊ̇ÍÓ ÓÌÓ Ì fl‚ÎflÂÚÒfl ÌË „ËÔÂ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û, ÌË „ÎÓ·‡Î¸ÌÓ ÌÂÓÚˈ‡ÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚Ï ÔÓ ÅÛÁÂχÌÛ.䂇ÁËÏÂÚË͇ íÂÒÚÓ̇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â íÂÈıÏ˛ÎÎÂ‡ Tg Á‡‰‡ÂÚÒfl ͇Í1inf ln || h ||Lip2 h‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 – Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ, „ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ || ⋅ ||Lip – ÎËԯˈ‚‡ ÌÓχ ̇ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÙÛÌ͈ËÈ f : X → Y , Á‡‰‡‚‡Âχfl Í‡Í || f ||Lip =dY ( f ( x ), f ( y))= sup.d X ( x, y)x , y ∈X , x ≠ yèÓÒÚ‡ÌÒÚ‚Ó ÏÓ‰ÛÎÂÈ Rg ÍÓÌÙÓÏÌ˚ı Í·ÒÒÓ‚ ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡g ÔÓÎÛ˜‡ÂÚÒfl ÔÛÚÂÏ Ù‡ÍÚÓËÁ‡ˆËË T g ÌÂÍÓÚÓÓÈ Ò˜ÂÚÌÓÈ „ÛÔÔÓÈ Â„Ó ‡‚ÚÓÏÓÙËÁÏÓ‚, ̇Á˚‚‡ÂÏÓÈ ÏÓ‰ÛÎflÌÓÈ „ÛÔÔÓÈ.

èËÏÂ‡ÏË ÏÂÚËÍ, Ò‚flÁ‡ÌÌ˚ı ÒÏÓ‰ÛÎflÏË Ë ÔÓÒÚ‡ÌÒÚ‚‡ÏË íÂÈıÏ˛ÎÎÂ‡, ÔÓÏËÏÓ ÏÂÚËÍË íÂÈıÏ˛ÎÎÂ‡, fl‚Îfl˛ÚÒfl ÏÂÚË͇ ÇÂÈÎfl-èÂÚÂÒÓ̇, ÏÂÚË͇ ä‚ËÎÂ̇, ÏÂÚË͇ ä‡‡ÚÂÓ‰ÓË, ÏÂÚË͇äÓ·‡È‡¯Ë, ÏÂÚË͇ ÅÂ„χ̇, ÏÂÚË͇ óÂÌ üÌ åÓ͇, ÏÂÚË͇ å‡ÍÏÛÎÎÂ̇,‡ÒËÏÔÚÓÚ˘ÂÒ͇fl ÏÂÚË͇ èÛ‡Ì͇Â, ÏÂÚË͇ ê˘˜Ë, ‚ÓÁÏÛ˘ÂÌ̇fl ÏÂÚË͇ê˘˜Ë, VHS-ÏÂÚË͇.åÂÚË͇ ÇÂÈÎfl–èÂÚÂÒÓ̇åÂÚËÍÓÈ ÇÂÈÎfl–èÂÚÂÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂıÎÂ‡ ̇ ÔÓÒÚ‡ÌÒÚ‚ÂíÂÈıÏ˛ÎÎÂ‡ Tg,n ‡·ÒÚ‡ÍÚÌ˚ı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡ g Ò n ‡Á˚‚‡ÏË ËÓÚˈ‡ÚÂθÌÓÈ ˝ÈÎÂÓ‚ÓÈ ı‡‡ÍÚÂËÒÚËÍÓÈ.åÂÚË͇ LJÈÎfl–èÂÚÂÒÓ̇ fl‚ÎflÂÚÒfl „ËÔÂ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓ„‰‡ ËÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (ÅÓÍ Ë î‡·, 2006) ÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ 3g – 3 + n ÔÓÒÚ‡ÌÒÚ‚‡ Tg,n Ì ·Óθ¯Â, ˜ÂÏ 2.åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇ fl‚ÎflÂÚÒfl 4n-ÏÂÌÓÈ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ n-ÏÓÌÓÔÓÎÂÈ ÔË ‰ÓÔÛ˘ÂÌËË ËÁÓÏÂÚ˘ÂÒÍÓ„Ó ‰ÂÈÒÚ‚Ëfln-ÏÂÌÓ„Ó ÚÓ‡ í n .

é̇ ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ ÓÔË҇̇ Ò ÔÓÏÓ˘¸˛ „ËÔÂÍÂıÎÂÓ‚ÓÈÙ‡ÍÚÓËÁ‡ˆËË ÔÎÓÒÍÓ„Ó Í‚‡ÚÂÌËÓÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.åÂÚË͇ á‡ÏÓÎÓ‰˜ËÍÓ‚‡åÂÚËÍÓÈ á‡ÏÓÎÓ‰˜ËÍÓ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ ‰‚ÛÏÂÌ˚ı ÍÓÌÙÓÏÌ˚ı ÚÂÓËÈ ÔÓÎfl.åÂÚËÍË Ì‡ ‰ÂÚÂÏË̇ÌÚÌ˚ı ÔflÏ˚ıèÛÒÚ¸ M n – n-ÏÂÌÓ ÍÓÏÔ‡ÍÚÌÓ „·‰ÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂ, ‡ F – ÔÎÓÒÍÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ̇ Mn . èÛÒÚ¸ H • ( M n , F ) = ⊗ in= 0 H i ( M n , F ) – ÍÓ„ÓÏÓÎÓ„Ëfl ‰Â ê‡Ï‡ÏÌÓ„ÓÓ·‡ÁËfl Mn Ò ÍÓ˝ÙÙˈËÂÌÚ‡ÏË ËÁ F. ÑÎfl n-ÏÂÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡V Â„Ó ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl det V ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÂıÌflfl ‚̯Ìflfl ÒÚÂÔÂ̸ V,Ú.Â. det V = ∧ n V . ÑÎfl ÍÓ̘ÌÓÏÂÌÓ„Ó „‡‰ÛËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡V = ⊗ in= 0 Vi ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl ÔÓÒÚ‡ÌÒÚ‚‡ V Á‡‰‡ÂÚÒfl Í‡Í ÚÂÌÁÓÌÓÂiÔÓËÁ‚‰ÂÌË det V = ⊗ in= 0 (det Vi )( −1) .

ëΉӂ‡ÚÂθÌÓ, ‰ÂÚÂÏË̇ÌÚÌÛ˛ ÔflÏÛ˛144ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfldet H • ( M n , F ) ÍÓ„ÓÏÓÎÓ„ËË H • ( M n , F ) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í det H • ( M n , F ) =i= ⊗ in= 0 (det H i ( M n , F ))( −1) .åÂÚËÍÓÈ êÂȉÂÏÂÈÒÚÂa ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ H • ( M n , F ), ÓÔ‰ÂÎflÂχflÁ‡‰‡ÌÌÓÈ „·‰ÍÓÈ Úˇ̄ÛÎflˆËÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ë Í·ÒÒ˘ÂÒÍËÏ ÍÛ˜ÂÌËÂÏêÂȉÂÏÂÈÒÚÂ‡–î‡Ìˆ‡.nèÛÒÚ¸ g F Ë g T ( M ) – ·Û‰ÛÚ „·‰ÍË ÏÂÚËÍË Ì‡ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË F Ë Í‡Ò‡ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T(Mn ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.

ùÚË ÏÂÚËÍË ÔÓÓʉ‡˛Ú ͇ÌÓÌ˘Â*nÒÍÛ˛ L2-ÏÂÚËÍÛ h H ( M , F ) ̇ H • ( M n , F ). åÂÚË͇ ê˝fl–ëËÌ„ÎÂ‡ ̇ det H • ( M n , F )ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÔÓËÁ‚‰ÂÌË ÏÂÚËÍË, ÔÓÓʉÂÌÌÓÈ Ì‡ det H • ( M n , F )•nÏÂÚËÍÓÈ h H ( M , F ) , Ë ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÍÛ˜ÂÌËfl ê˝fl–ëËÌ„ÎÂ‡.

Характеристики

Тип файла
PDF-файл
Размер
3,34 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее