Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 29
Текст из файла (страница 29)
ùÚËÏË ÛÒÎÓ‚ËflÏËkdt∂xs=rÓ·ÂÒÔ˜˂‡ÂÚÒfl ÌÂÁ‡‚ËÒËÏÓÒÚ¸ ˝ÎÂÏÂÌÚ‡ ‰Û„Ë ds ÓÚ Ô‡‡ÏÂÚËÁ‡ˆËË ÍË‚ÓÈ .x = x(t)åÌÓ„ÓÓ·‡ÁË 䇂‡„Û˜Ë (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ä‡‚‡„Û˜Ë) – ˝ÚÓ „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡‚‡„Û˜Ë. éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÙËÌÒÎÂÓ‚‡ÏÌÓ„ÓÓ·‡ÁËfl.k∑É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË127ëÛÔÂÏÂÚË͇ Ñ ÇËÚÚ‡ëÛÔÂÏÂÚËÍÓÈ ÑÂ-ÇËÚÚ‡ (ËÎË ÒÛÔÂÏÂÚËÍÓÈ ìË· – ÑÂ-ÇËÚÚ‡) G = (G ijkl)̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ (ËÎË ÔÒ‚‰ÓËχÌÓ‚ÓÈ) ÏÂÚËÍË g = g(gij),ËÒÔÓθÁÛÂÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÚӘ͇ÏË ‰‡ÌÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl,̇ ÒÎÛ˜‡È ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ ˝ÚÓÏ ÏÌÓ„ÓÓ·‡ÁËË.íӘ̠„Ó‚Ófl, ‰Îfl ‰‡ÌÌÓ„Ó Ò‚flÁÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M 3‡ÒÒÏÓÚËÏ ÔÓÒÚ‡ÌÒÚ‚Ó (M 3 ) ‚ÒÂı ËχÌÓ‚˚ı (ËÎË ÔÒ‚‰ÓËχÌÓ‚˚ı) ÏÂÚËÍ Ì‡Mn .
à‰ÂÌÚËÙˈËÛfl ÚÓ˜ÍË (M3 ), Ò‚flÁ‡ÌÌÓ ‰ËÙÙÂÓÏÓÙËÁÏÓÏ M 3 , ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó Geom(M 3 ) 3-„ÂÓÏÂÚËÈ (Á‡‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËË), ÚӘ͇ÏËÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Í·ÒÒ˚ ‰ËÙÙÂÓÏÓÙÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı ÏÂÚËÍ. èÓÒÚ‡ÌÒÚ‚ÓGeom(M3 ) ̇Á˚‚‡ÂÚÒfl ÒÛÔÂÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÌÓ Ë„‡ÂÚ ‚‡ÊÌÛ˛ Óθ ‚ ÌÂÍÓÚÓ˚ıÙÓÏÛÎËӂ͇ı Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË.ëÛÔÂÏÂÚËÍÓÈ, Ú.Â. "ÏÂÚËÍÓÈ ÏÂÚËÍ", ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ (M3 ) (ËÎË Ì‡Geom(M3 )), ËÒÔÓθÁÛÂχfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ M 3 (ËÎËÏÂÊ‰Û Ëı Í·ÒÒ‡ÏË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË).
ÖÒÎË ËÏÂÂÚÒfl ÏÂÚË͇ g = (gij)) ∈ (M3 ), ÚÓ|| δg ||2 =∫d 3 xG ijkl ( x )δgij ( x )δgkl ( x ).M3„‰Â G ijkl – ‚Â΢Ë̇, Ó·‡Ú̇fl ÒÛÔÂÏÂÚËÍ Ñ‚ËÚÚ‡Gijkl =1( gik g jl _ gil g jk − λgij gkl ).2 det( gij )ÇÂ΢Ë̇ λ Ô‡‡ÏÂÚËÁÛÂÚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÚË͇ÏË (M 3 ) ‚ Ë ÏÓÊÂÚ ÔË2ÌËχڸ β·˚ ‰ÂÈÒÚ‚ËÚÂθÌ˚ Á̇˜ÂÌËfl, ÍÓÏ λ = , ÔË ÍÓÚÓÓÏ ÒÛÔÂÏÂÚË͇3ÒÚ‡ÌÓ‚ËÚÒfl ÒËÌ„ÛÎflÌÓÈ.ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊËëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (ËÎË ÒËÏÔÎˈˇθ̇fl ÒÛÔÂÏÂÚË͇) fl‚ÎflÂÚÒfl‡Ì‡ÎÓ„ÓÏ ÒÛÔÂÏÂÚËÍË ÑÂ-ÇËÚÚ‡ Ë ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂʉÛÒËÏÔÎˈˇθÌ˚ÏË 3-„ÂÓÏÂÚËflÏË ‚ ÒËÏÔÎˈˇθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌÙ˄ۇˆËÈ.ÅÓΠÚÓ˜ÌÓ, ÂÒÎË ËÏÂÂÚÒfl Á‡ÏÍÌÛÚÓ ÒËÏÔÎˈˇθÌÓ ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M3 , ÒÓÒÚÓfl˘Â ËÁ ÌÂÒÍÓθÍËı ÚÂÚ‡˝‰Ó‚ (Ú.Â.
ÚÂıÏÂÌ˚ı ÒËÏÔÎÂÍÒÓ‚), ÚÓÒËÏÔÎˈˇθ̇fl „ÂÓÏÂÚËfl ̇ M3 Á‡‰‡ÂÚÒfl ÔËÒ‚ÓÂÌËÂÏ Á̇˜ÂÌËÈ Í‚‡‰‡ÚÓ‚ ‰ÎËÌÒÚÓÓÌ ˝ÎÂÏÂÌÚ‡ÏË ËÁ M3 Ë ‚˚‚‰ÂÌËÂÏ ‚Ó ‚ÌÛÚÂÌÌÓÒÚË Í‡Ê‰Ó„Ó ÚÂÚ‡˝‰‡ÔÎÓÒÍÓÈ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ˝ÚËÏ Á̇˜ÂÌËflÏ. 䂇‰‡Ú˚ ‰ÎË̉ÓÎÊÌ˚ ·˚Ú¸ ÔÓÎÓÊËÚÂθÌ˚ÏË Ë Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ̇‚ÂÌÒÚ‚‡Ï ÚÂÛ„ÓθÌË͇ Ë Ëı‡Ì‡ÎÓ„‡Ï ‰Îfl ÚÂÚ‡˝‰Ó‚, Ú.Â. ‚Ò ͂‡‰‡Ú˚ Ï (‰ÎËÌ, ÔÎÓ˘‡‰ÂÈ, Ó·˙ÂÏÓ‚) ‰ÓÎÊÌ˚·˚Ú¸ ÌÂÓÚˈ‡ÚÂθÌ˚ÏË (ÒÏ. ̇‚ÂÌÒÚ‚Ó ÚÂÚ‡˝‰‡, „Î. 3). åÌÓÊÂÒÚ‚Ó (M3 ) ‚ÒÂıÒËÏÔÎˈˇθÌ˚ı „ÂÓÏÂÚËÈ Ì‡ M3 ̇Á˚‚‡ÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏÍÓÌÙ˄ۇˆËÈ.ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (Gmn) ̇ ÏÌÓÊÂÒÚ‚Â (M3 ) ÔÓÓʉ‡ÂÚÒfl ÒÛÔÂÏÂÚËÍÓÈ Ñ‚ËÚÚ‡ ̇ (M 3 ) Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰Îfl ËÁÓ·‡ÊÂÌËfl ÚÓ˜ÂÍ ‚ (M3 ) Ú‡ÍËıÏÂÚËÍ ‚ (M 3 ), ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÍÛÒÓ˜ÌÓ ÔÎÓÒÍËÏË ‚ ÚÂÚ‡˝‰‡ı.CÛÔÂÏÂÚËÍË ‚ ‰Ó͇Á‡ÚÂθÒÚ‚Â èÂÂθχ̇è‰ÎÓÊÂÌ̇fl ì. íÂÒÚÓÌÓÏ „ËÔÓÚÂÁ‡ „ÂÓÏÂÚËÁ‡ˆËË Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ÔÓÒΉ‚Ûı ıÓÓ¯Ó ËÁ‚ÂÒÚÌ˚ı ‰ÂÍÓÏÔÓÁˈËÈ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ‰ÓÔÛÒ͇ÂÚ128ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl‚ ͇˜ÂÒÚ‚Â ÓÒÚ‡ÚÓ˜Ì˚ı ÍÓÏÔÓÌÂÌÚ ÚÓθÍÓ Ó‰ÌÛ ËÁ ‚ÓÒ¸ÏË ÚÂÒÚÓÌÓ‚ÒÍËı ÏÓ‰ÂθÌ˚ı „ÂÓÏÂÚËÈ.
ÖÒÎË ‰‡Ì̇fl „ËÔÓÚÂÁ‡ ‚Â̇, ÚÓ ÓÚÒ˛‰‡ ÒΉÛÂÚ ÒÔ‡‚‰ÎË‚ÓÒÚ¸Á̇ÏÂÌËÚÓÈ „ËÔÓÚÂÁ˚ èÛ‡Ì͇ (1904) Ó ÚÓÏ, ˜ÚÓ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ,‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÔÓÒÚ‡fl Á‡ÏÍÌÛÚ‡fl ÍË‚‡fl ÏÓÊÂÚ ·˚Ú¸ ÌÂÔÂ˚‚ÌÓ ‰ÂÙÓÏËÓ‚‡Ì‡ ‚ ÚÓ˜ÍÛ, „ÓÏÂÓÏÓÙÌÓ ÚÂıÏÂÌÓÈ ÒÙÂÂ.Ç 2003 „. èÂÂÎ¸Ï‡Ì ‰‡Î ̇·ÓÒÓÍ ‰Ó͇Á‡ÚÂθÒÚ‚‡ „ËÔÓÚÂÁ˚ íÂÒÚÓ̇ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÌÂÍÓÈ ÒÛÔÂÏÂÚËÍË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ‚ÒÂı ËχÌÓ‚˚ı ÏÂÚËÍ ‰‡ÌÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ç ÔÓÚÓÍ ê˘˜Ë ‡ÒÒÚÓflÌËfl ÛÏÂ̸¯‡˛ÚÒfl ‚ ̇ԇ‚ÎÂÌËË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚, ÔÓÒÍÓθÍÛ ÏÂÚË͇ Á‡‚ËÒËχ ÓÚ‚ÂÏÂÌË.
åÓ‰ËÙË͇ˆËfl èÂÂθχ̇ Òڇ̉‡ÚÌÓ„Ó ÔÓÚÓ͇ ê˘˜Ë ÔÓÁ‚ÓÎË· ÒËÒÚÂχÚ˘ÂÒÍË Û‰‡ÎflÚ¸ ‚ÓÁÌË͇˛˘Ë ÒËÌ„ÛÎflÌÓÒÚË.7.2. êàåÄçéÇõ åÖíêàäà Ç íÖéêàà àçîéêåÄñààèËÏÂÌËÚÂθÌÓ Í ÚÂÓËË ËÌÙÓχˆËË Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÒÔˆˇθÌ˚ ËχÌÓ‚˚ ÏÂÚËÍË, Ô˜Â̸ ÍÓÚÓ˚ı Ô‰ÒÚ‡‚ÎÂÌ ÌËÊÂ.àÌÙÓχˆËÓÌ̇fl ÏÂÚË͇ îË¯Â‡Ç ÒÚ‡ÚËÒÚËÍÂ, ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ Ë ËÌÙÓχˆËÓÌÌÓÈ „ÂÓÏÂÚËË ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ (ËÎË ÏÂÚËÍÓÈ î˯‡, ÏÂÚËÍÓÈ ê‡Ó) ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓ„Ó ‰ËÙÙÂÂ̈ˇθÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (ÒÏ., ̇ÔËÏÂ, [Amar85], [Frie98]). Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˜¸ ˉÂÚ Ó Ôˉ‡ÌËË Ò‚ÓÈÒÚ‚ ‰ËÙÙÂÂ̈ˇθÌÓÈ „ÂÓÏÂÚËË ÒÂÏÂÈÒÚ‚Û Í·ÒÒ˘ÂÒÍËı ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl ÚÂÓËË‚ÂÓflÚÌÓÒÚÂÈ.îÓχθÌÓ, ÔÛÒÚ¸ pθ = p( x, θ) – ÒÂÏÂÈÒÚ‚Ó ÔÎÓÚÌÓÒÚÂÈ, ÔÂÂÌÛÏÂÓ‚‡ÌÌ˚ı nÔ‡‡ÏÂÚ‡ÏË θ = (θ1 ,..., θ n ), ÍÓÚÓ˚ ӷ‡ÁÛ˛Ú Ô‡‡ÏÂÚ˘ÂÒÍÓ ÏÌÓ„ÓÓ·‡ÁË ê.àÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ g = gθ ̇ ê ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇,Á‡‰‡‚‡Âχfl ËÌÙÓχˆËÓÌÌÓÈ Ï‡ÚˈÂÈ î˯‡ ((I(θ) ij)), „‰Â ∂ ln pθ ∂ ln pθ I (θ)ij = θ = ⋅=∂θ j ∂θ i∫∂ ln p( x, θ) ∂ ln p( x, θ)p( x, θ)dx.∂θ i∂θ jùÚÓ – ÒËÏÏÂÚ˘̇fl ·ËÎËÌÂÈ̇fl ÙÓχ, ÍÓÚÓ‡fl ‰‡ÂÚ Ì‡Ï Í·ÒÒ˘ÂÒÍÛ˛ ÏÂÛ(ÏÂÛ ê‡Ó) ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ ‡Á΢ËÏÓÒÚË Ô‡‡ÏÂÚÓ‚ ‡ÒÔ‰ÂÎÂÌËfl.
èÓ·„‡fli( x, θ) = − ln p( x, θ), ÔÓÎÛ˜ËÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‚˚‡ÊÂÌË ∂ 2 i( x , θ) I (θ)ij = θ = ∂θ i ∂θ j ∫∂ 2 i( x , θ)p( x, θ)dx.∂θ i ∂θ jÅÂÁ ËÒÔÓθÁÓ‚‡ÌËfl flÁ˚͇ ÍÓÓ‰Ë̇Ú, ÔÓÎÛ˜ËÏI (θ)(u, v) = θ [u(ln pθ ) ⋅ v(ln pθ )],„‰Â u Ë v – ‚ÂÍÚÓ˚, ͇҇ÚÂθÌ˚Â Í Ô‡‡ÏÂÚ˘ÂÒÍÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ê, ‡du(ln pθ ) = ln pθ + tu |t = 0 – ÔÓËÁ‚Ӊ̇fl ÓÚ ln pθ ÔÓ Ì‡Ô‡‚ÎÂÌ˲ u.dtåÌÓ„ÓÓ·‡ÁË ‡ÒÔ‰ÂÎÂÌËfl ÔÎÓÚÌÓÒÚÂÈ M fl‚ÎflÂÚÒfl Ó·‡ÁÓÏ Ô‡‡ÏÂÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ê ÔË ÓÚÓ·‡ÊÂÌËË θ → pθ Ò ÌÂÍÓÚÓ˚ÏË ÛÒÎÓ‚ËflÏË129É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË„ÛÎflÌÓÒÚË. ÇÂÍÚÓ u, ͇҇ÚÂθÌ˚È Í ‰‡ÌÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲, ËÏÂÂÚ ‚ˉdu = ln pθ + tu |t = 0 , Ë ÏÂÚË͇ î˯‡ g = gp ̇ å, ÔÓÎÛ˜ÂÌ̇fl ËÁ ÏÂÚËÍË gθ ̇ ê,dtÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ ‚ ‚ˉÂu vg p (u, v) = p ⋅ . p påÂÚË͇ î˯‡ Ë ê‡ÓnèÛÒÚ¸ n = {p ∈ n :∑pi = 1, p > 0} – ÒËÏÔÎÂÍÒ ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı ‚ÂÓ-i =1flÚÌÓÒÚÌ˚ı ‚ÂÍÚÓÓ‚.
ùÎÂÏÂÌÚ p ∈ n fl‚ÎflÂÚÒfl ÔÎÓÚÌÓÒÚ¸˛ n-ÚӘ˜ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ {1, ..., n } Ò p(i ) = pi. ùÎÂÏÂÌÚ u ͇҇ÚÂθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Tp ( n ) =n= {u ∈ n :∑ ui = 0} ‚ ÚӘ͠p ∈ n ÂÒÚ¸ ÙÛÌ͈ËÂfl ̇ ÏÌÓÊÂÒÚ‚Â Ò {1, ..., n} Òi =1u(i) = ui.åÂÚË͇ î˯‡ ê‡Ó gp ̇ n fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ ‚˚‡ÊÂÌËÂÏng p (u, v) =∑i =1ui vipi‰Îfl β·˚ı u, v ∈ Tp ( n ), Ú.Â. fl‚ÎflÂÚÒfl ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ ̇ n .åÂÚË͇ î˯‡ – ê‡Ó fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ (Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÔÓÒÚÓflÌÌÓ„Ó ÏÌÓÊËÚÂÎfl) ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ n , ÒÛʇÂÏÓÈ ÔË ÒÚÓı‡ÒÚ˘ÂÒÍÓÏ ÓÚÓ·‡ÊÂÌËË([Chen72]).åÂÚË͇ î˯‡ – ê‡Ó ËÁÓÏÂÚ˘‡ (ÒÏ. ÓÚÓ·‡ÊÂÌË p → 2( p1 ,..., pn )) Òڇ̉‡ÚÌÓÈ ÏÂÚËÍ ̇ ÓÚÍ˚ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÒÙÂ˚ ‡‰ËÛÒ‡ ‰‚‡ ‚ n .
í‡ÍÓÂÓÚÓʉÂÒÚ‚ÎÂÌË n ÔÓÁ‚ÓÎflÂÚ ÔÓÎÛ˜ËÚ¸ ̇ n „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ̇Á˚‚‡ÂÏÓ ‡ÒÒÚÓflÌËÂÏ î˯‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ Åı‡ÚÚ‡˜‡¸fl 1), ÔÓÒ‰ÒÚ‚ÓÏ ÙÓÏÛÎ˚2 arccos∑ pi1 / 2 qi1 / 2 .iåÂÚË͇ î˯‡–ê‡Ó ÏÓÊÂÚ ·˚Ú¸ ‡Ò¯ËÂ̇ ̇ ÏÌÓÊÂÒÚ‚Ó n = {p ∈ n ,pi > 0} ‚ÒÂı ÍÓ̘Ì˚ı ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı Ï ̇ ÏÌÓÊÂÒÚ‚Â {1, ..., n}. Ç ˝ÚÓÏÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ̇ n ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ͇Í2∑(ipi − qi2) 1/ 2‰Îfl β·˚ı p, q ∈ n (ÒÏ. åÂÚË͇ ïÂÎÎË̉ʇ, „Î. 14).åÓÌÓÚÓÌ̇fl ÏÂÚË͇èÛÒÚ¸ n ·Û‰ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı n × n χÚˈ, ‡ ⊂ Mn –ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ.
èÛÒÚ¸130ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl ⊂ , = {ρ ∈ : Tr ρ = 1} – ·Û‰ÂÚ ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı χÚˈ ÔÎÓÚÌÓÒÚË.ä‡Ò‡ÚÂθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ ÚӘ͠ρ ∈ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓTp () = {x ∈ Mn : x = x *}, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ˝ÏËÚÓ‚˚ı n × n χÚˈ. ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tρ() ‚ ÚӘ͠ρ ∈ ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ·ÂÒÒΉӂ˚ı (Ú.Â.Ëϲ˘Ëı ÌÛ΂ÓÈ ÒΉ) χÚˈ ‚ Tρ().êËχÌÓ‚‡ ÏÂÚË͇ λ ̇ ̇Á˚‚‡ÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË Ì‡‚ÂÌÒÚ‚Óλ h(ρ) (h(u), h(u)) < λ ρ (u, u)‚˚ÔÓÎÌflÂÚÒfl ‰Îfl β·˚ı ρ ∈ , β·˚ı u ∈ T ρ() Ë Î˛·˚ı ‚ÔÓÎÌ ÔÓÎÓÊËÚÂθÌ˚ıÒÓı‡Ìfl˛˘Ëı ÒΉ˚ ÓÚÓ·‡ÊÂÌËÈ h, ̇Á˚‚‡ÂÏ˚ı ÒÚÓı‡ÒÚ˘ÂÒÍËÏË ÓÚÓ·‡ÊÂÌËflÏË.
Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ([Petz96]), λ fl‚ÎflÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓÚÓ„‰‡, ÍÓ„‰‡  ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í λ ρ (u, v) = Tr uJρ (u, u), „‰Â Jρ – ÓÔ‡ÚÓ ‚ˉ‡1. á‰ÂÒ¸ L ρ Ë Rρ – ΂˚È Ë Ô‡‚˚È ÓÔ‡ÚÓ˚ ÛÏÌÓÊÂÌËfl, ‡ f:f ( Lρ / Rρ ) Rρ(0, ∞ ) → – ÓÔ‡ÚÓ ÏÓÌÓÚÓÌÌÓÈ ÙÛÌ͈ËË, ÍÓÚÓ˚È ÒËÏÏÂÚ˘ÂÌ, Ú.Â.f (t ) = tf (t −1 ), Ë ÌÓÏËÓ‚‡Ì, Ú.Â. f (1) = 1. Jρ ( v) = ρ −1v, ÂÒÎË v Ë ρ ÍÓÏÏÛÚËÛ˛ÚÏÂÊ‰Û ÒÓ·ÓÈ, Ú.Â. β·‡fl ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ‡‚̇ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÂî˯‡ ̇ ÍÓÏÏÛÚ‡ÚË‚Ì˚ı ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËflı. ëΉӂ‡ÚÂθÌÓ, ÏÓÌÓÚÓÌÌ˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ó·Ó·˘ÂÌËÂÏ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍË î˯‡ ̇ Í·ÒÒ ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl (Í·ÒÒ˘ÂÒÍËÈ ËÎË ÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È) ̇ Í·ÒÒ Ï‡ÚˈÔÎÓÚÌÓÒÚË (Í‚‡ÌÚÓ‚˚È ËÎË ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È), ÔËÏÂÌflÂÏ˚ı ‚ Í‚‡ÌÚÓ‚ÓÈÒÚ‡ÚËÒÚËÍÂ Ë ÚÂÓËË ËÌÙÓχˆËË. àÏÂÌÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ˜Ì˚ıÒÓÒÚÓflÌËÈ n-ÛÓ‚Ì‚ÓÈ Í‚‡ÌÚÓ‚ÓÈ ÒËÒÚÂÏ˚.1åÓÌÓÚÓÌÌÛ˛ ÏÂÚËÍÛ λ ρ (u, v Tr u( v) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ë̇˜Â ͇Íf ( Lρ / Rρ ) RρJρ =λ ρ (u, v) = Tr uc( Lρ Rρ ) ( v), „‰Â ÙÛÌ͈Ëfl c( x, y) =1fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ åÓÓÁÓf ( x / y) y‚‡–óÂ̈ӂ‡, ÓÚÌÓÒfl˘ÂÈÒfl Í λ.åÂÚË͇ ÅÛÂÒ‡ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ÂÈ ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl1+ i2f (t ) =(‰Îfl c( x, y) =).
Ç ˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸ ÒËÏÏÂÚ2x+y˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl.åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ fl‚ÎflÂÚÒfl ̇˷Óθ¯ÂÈ ÏÓÌÓÚÓÌ2tx+yÌÓÈ ÏÂÚËÍÓÈ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÙÛÌ͈ËË f (t ) =(ÙÛÌ͈ËË c( x, y) =). Ç1+ t2 xy1˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = (ρ −1v + vρ −1 ) – Ô‡‚‡fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl.2x −1åÂÚË͇ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË ÔÓÎÛ˜‡ÂÚÒfl ÔË f ( x ) =(ÔË c( x, y) =ln x∂2ln x − ln yTr(ρ + su)ln(ρ + tv) |s, t = 0 .=). Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í λ ρ (u, v) =∂s∂tx−yåÂÚËÍË Ç˄̇–ü̇Ò–чÈÒÓ̇ λαρ fl‚Îfl˛ÚÒfl ÏÓÌÓÚÓÌÌ˚ÏË ‰Îfl α ∈ [–3,3].ÑÎfl α = ±1 ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË; ‰Îfl α = ±3 ÔÓÎÛ˜‡ÂÏ ÏÂÚ-131É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍËËÍÛ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ. ç‡ËÏÂ̸¯ÂÈ ‚ ÒÂÏÂÈÒÚ‚Â fl‚ÎflÂÚÒflÏÂÚË͇ Ç˄̇–ü̇Ò–чÈÒÓ̇, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl α = 0.åÂÚË͇ ÅÛÂÒ‡åÂÚË͇ ÅÛÂÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒ͇fl ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ,Á‡‰‡‚‡Âχfl ‚˚‡ÊÂÌËÂÏ λ ρ (u, v) = Tr uJρ ( v), „‰Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸ÒËÏÏÂÚ˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl.