Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 31
Текст из файла (страница 31)
ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflË‚‡Ú¸ Í‡Í 2n–ÏÂÌÓ (¯ÂÒÚËÏÂÌ˚È ÒÎÛ˜‡È Ô‰ÒÚ‡‚ÎflÂÚ ÓÒÓ·˚È ËÌÚÂÂÒ) „·‰ÍÓÂÏÌÓ„ÓÓ·‡ÁËÂ Ò „ÛÔÔÓÈ „ÓÎÓÌÓÏËË (Ú.Â. ÏÌÓÊÂÒÚ‚ÓÏ ÎËÌÂÈÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ Í‡Ò‡ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚, ÔÓËÒÚÂ͇˛˘Ëı ËÁ Ô‡‡ÎÎÂθÌÓ„Ó ÔÂÂÌÓÒ‡ ‚‰Óθ Á‡ÏÍÌÛÚ˚ıÍÓÌÚÛÓ‚) ‚ ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÂ.åÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇åÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇ (ËÎË ÏÂÚË͇ ùÈ̯ÚÂÈ̇) – ÏÂÚË͇ äÂı· ̇ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Û ÍÓÚÓÓÈ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë ÔÓÔÓˆËÓ̇ÎÂÌ ÏÂÚ˘ÂÒÍÓÏÛ ÚÂÌÁÓÛ. ùÚ‡ ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏÛ‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË.åÌÓ„ÓÓ·‡ÁËÂÏ äÂı·–ùÈ̯ÚÂÈ̇ (ËÎË ÏÌÓ„ÓÓ·‡ÁËÂÏ ùÈ̯ÚÂÈ̇) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ äÂı·–ùÈ̯ÚÂÈ̇.Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë, ‡ÒÒχÚË‚‡ÂÏ˚È Í‡Í ÓÔ‡ÚÓ Ì‡ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, fl‚ÎflÂÚÒfl ÛÏÌÓÊÂÌËÂÏ Ì‡ ÍÓÌÒÚ‡ÌÚÛ.í‡Í‡fl ÏÂÚË͇ ÒÛ˘ÂÒÚ‚ÛÂÚ Ì‡ β·ÓÈ Ó·Î‡ÒÚË D ⊂ n , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ Ë ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ.
Ö ÏÓÊÌÓ Á‡‰‡Ú¸ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 =∑i, j∂ 2 u( z )dzi dz j ,∂z i ∂z j ∂2u 2u„‰Â u ÂÒÚ¸ ¯ÂÌË ͇‚ÓÈ Á‡‰‡˜Ë: det = e ̇ D, Ë Ì‡ u = ∞ ̇ ∂D.∂∂zz i jåÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ ÏÂÚËÍÓÈ. ç‡ Â‰ËÌ˘ÌÓÏ ‰ËÒÍÂ∆ = {z ∈ : | z |< 1} Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â.åÂÚË͇ ïӉʇåÂÚË͇ ïӉʇ – ÏÂÚË͇ äÂı·, ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÍÓÚÓÓÈ ÓÔ‰ÂÎflÂÚ ËÌÚ„‡Î¸Ì˚È Í·ÒÒ ÍÓ„ÓÏÓÎÓ„ËÈ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ËÏÂÂÚ ËÌÚ„‡Î¸Ì˚ÂÔÂËÓ‰˚.åÌÓ„ÓÓ·‡ÁË ïӉʇ – ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ïӉʇ. äÓÏÔ‡ÍÚÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁË fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ïӉʇ ÚÓ„‰‡Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ËÁÓÏÓÙÌÓ „·‰ÍÓÏÛ ‡Î„·‡Ë˜ÂÒÍÓÏÛ ÔÓ‰ÏÌÓ„ÓÓ·‡Á˲ÌÂÍÓÚÓÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡.åÂÚË͇ îÛ·ËÌË–òÚÛ‰ËåÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë – ÏÂÚË͇ äÂı· ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Pn , ÓÔ‰ÂÎflÂχfl ˜ÂÂÁ ˝ÏËÚÓ‚Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 , 〉‚ n+1.é̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 =〈 x, x 〉〈 dx, dx 〉 − 〈 x, dx 〉〈 x , dx 〉.〈 x, x 〉 2ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ( x1 : ...
: x n +1 ), ( y1 : ... : yn +1 ) ∈P n , „‰Â x == (x1, ..., xn+1), y = (y1, ..., yn+1) ∈ Cn\{0}, ‡‚ÌÓarccos〈 x, y 〉〈 x, x 〉〈 y, y 〉.åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ïӉʇ. èÓÒÚ‡ÌÒÚ‚Ó Pn , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ îÛ·ËÌË–òÚÛ‰Ë, ̇Á˚‚‡ÂÚÒfl ˝ÏËÚÓ‚˚Ï ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. ùÏËÚÓ‚‡ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇).É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË137åÂÚË͇ Å„χ̇åÂÚËÍÓÈ Å„χ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂı· ̇ Ó„‡Ì˘ÂÌÌÓÈ Ó·Î‡ÒÚËD ⊂ n , Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 =∑i, j∂ 2 ln K ( z, z )dz i dz j ,∂z i ∂z j„‰Â K(z, u) fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ fl‰‡ Å„χ̇. åÂÚË͇ Å„χ̇ ËÌ‚‡Ë‡ÌÚ̇ ÓÚÌÓÒËÚÂθÌÓ ‡‚ÚÓÏÓÙËÁÏÓ‚ ӷ·ÒÚË D; Ó̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË Ó·Î‡ÒÚ¸ D Ó‰ÌÓӉ̇.
ÑÎfl ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ = {z ∈ : | z |< 1} ÏÂÚË͇ Å„χ̇ ÒÓ‚Ô‡‰‡ÂÚ ÒÏÂÚËÍÓÈ èÛ‡Ì͇ (ÒÏ. Ú‡ÍÊ -ÏÂÚË͇ Å„χ̇, „Î. 13).îÛÌ͈Ëfl fl‰‡ Å„χ̇ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‡ÒÒÏÓÚËÏ Ó·Î‡ÒÚ¸D ⊂ n, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚Û˛Ú ‡Ì‡ÎËÚ˘ÂÒÍË ÙÛÌ͈ËË f ≠ 0 Í·ÒÒ‡ L 2 (D) ÔÓÓÚÌÓ¯ÂÌ˲ Í Î·„ӂÓÈ ÏÂÂ; ÏÌÓÊÂÒÚ‚Ó ˝ÚËı ÙÛÌ͈ËÈ Ó·‡ÁÛÂÚ „Ëθ·ÂÚÓ‚ÓÔÓÒÚ‡ÌÒÚ‚Ó L2, a ( D) ⊂ L2 ( D) Ò ÓÚÓ„Ó̇θÌ˚Ï ·‡ÁËÒÓÏ (φi)i; ÙÛÌ͈Ëfl fl‰‡Å„χ̇ ‚ ӷ·ÒÚË D × D ⊂ 2 n Á‡‰‡ÂÚÒfl Í‡Í K D ( z, u) =∞∑φ i (u).i =1ÉËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ÉËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ g ̇ 4n-ÏÂÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË, ÒÓ‚ÏÂÒÚËχfl Ò Í‚‡ÚÂÌËÓÌÌÓÈ ÒÚÛÍÚÛÓÈ Ì‡ ͇҇ÚÂθÌÓχÒÒÎÓÂÌËË ÏÌÓ„ÓÓ·‡ÁËfl.
àÏÂÌÌÓ, ÏÂÚË͇ g fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ äÂı· ÔÓÓÚÌÓ¯ÂÌ˲ Í ÚÂÏ ÒÚÛÍÚÛ‡Ï äÂı· (I, wI , g), (J, wJ, g) Ë (K, wK , g), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÍÓÏÔÎÂÍÒÌ˚Ï ÒÚÛÍÚÛ‡Ï, Í‡Í ˝Ì‰ÓÏÓÙËÁÏ‡Ï Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, ÍÓÚÓ˚ Óڂ˜‡˛Ú ÛÒÎÓ‚ËflÏ Í‚‡ÚÂÌËÓÌÌÓÈ ‚Á‡ËÏÓÒ‚flÁËI 2 = J 2 = K 2 = IJK = − JIK = −1.ÉËÔÂÍÂıÎÂÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ – ÓÒÓ·˚È ÒÎÛ˜‡È ÏÌÓ„ÓÓ·‡ÁËfl äÂı·.ÇÒ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl fl‚Îfl˛ÚÒfl ê˘˜Ë-ÔÎÓÒÍËÏË. äÓÏÔ‡ÍÚÌ˚ ˜ÂÚ˚ÂıÏÂÌ˚ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡˛ÚÒfl K3-ÔÓ‚ÂıÌÓÒÚflÏË Ë ËÁÛ˜‡˛ÚÒfl ‚ ‡Î„·‡Ë˜ÂÒÍÓÈ „ÂÓÏÂÚËË.åÂÚË͇ ä‡Î‡·ËåÂÚË͇ ä‡Î‡·Ë – „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË*T (P n +1 ) ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ P n +1 .
ÑÎfl n = 4k + 4 ˝Ú‡ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 =2 2dr 21 21 21 222222−4 2r(r)λr(νν)(r)(σσ)(r)+1−+++−1+++1+121α2α221 − r −1 4 1α 2 α∑ ∑ ,„‰Â λ, ν1 , ν 2 , σ1α , σ 2 α , Ò α, Ôӷ„‡˛˘ËÏ k Á̇˜ÂÌËÈ, fl‚Îfl˛ÚÒfl ΂ÓËÌ‚‡1α 2 α ˇÌÚÌ˚ÏË 1-ÙÓχÏË (Ú.Â. ÎËÌÂÈÌ˚ÏË ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË ÙÛÌ͈ËflÏË) ̇ ÒÏÂÊÌÓÏÍ·ÒÒ SU(k + 2)/U(k). á‰ÂÒ¸ fl‚ÎflÂÚÒfl ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ÍÓÏÔÎÂÍÒÌ˚ı k × k ÛÌËÚ‡Ì˚ı χÚˈ, ‡ SU(k) – ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ ÒÓÔ‰ÂÎËÚÂÎÂÏ 1.ÑÎfl k = 0 ÏÂÚË͇ ä‡Î‡·Ë Ë ÏÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡˛Ú.∑∑138ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflåÂÚË͇ ëÚÂÌÁÂÎflåÂÚËÍÓÈ ëÚÂÌÁÂÎfl ̇Á˚‚‡ÂÚÒfl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓχÒÒÎÓÂÌËË T*(Sn+1) ÒÙÂ˚ Sn+1.SO(3)-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇SO(3)-ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl 4-ÏÂ̇fl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ÒÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Á‡‰‡ÌÌ˚Ï ‚ ÙÓχÎËÁÏ ÅˇÌÍË-IX ͇Íds 2 = f 2 (t )dt 2 + σ 2 (t )σ12 + b 2 (t )σ 22 + c 2 (t )σ 32 ,„‰Â ËÌ‚‡Ë‡ÌÚÌ˚ 1-ÙÓÏ˚ σ1, σ2, σ3, ËÁ SO(3) ‚˚‡ÊÂÌ˚ ‚ ÚÂÏË̇ı Û„ÎÓ‚ ù1(cos ψdθ + sin θ sin ψdφ),211σ 3 = ( dψ + sonθdφ) Ë ÌÓχÎËÁ‡ˆËfl ‚˚·‡Ì‡ Ú‡Í, ˜ÚÓ σ1 ∧ σ j = ε ijk dσ k .
äÓÓ22‰Ë̇ÚÛ t ‚Ò„‰‡ ÏÓÊÌÓ ‚˚·‡Ú¸ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÔÂÂÔ‡‡ÏÂÚ1ËÁ‡ˆËË Ú‡Í, ˜ÚÓ f (t ) = abc.2È· θ,ψ,σ1 =φ ͇Í1(sin ψdθ − sin θ cos ψdφ),2σ2 =åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ Â„ÛÎflÌÓÈ SO(3)-ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ2dk1222222ds = a 2 b 2 c 2 22 + a ( k )σ1 + b ( k )σ 2 + c ( k )σ 3 ,4 k (1 − k ) K 2„‰Â a, b, c – ÙÛÌ͈ËË ÓÚ k, ab = –K(k)(E(k) – K(k)), bc = –K(k)(E(k) – (1 – k 2)K(k)),ac = –K(k)(E(k) Ë K(k), E(k) – ÔÓÎÌ˚ ˝ÎÎËÔÚ˘ÂÒÍË ËÌÚ„‡Î˚ ÔÂ‚Ó„Ó Ë ‚ÚÓÓ„Ó2 K (1 − k 2 )Ó‰‡ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò 0 < k < 1. äÓÓ‰Ë̇ڇ t Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛΠt =ÒπK ( k )ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ‡‰‰ËÚË‚ÌÓÈ ÔÓÒÚÓflÌÌÓÈ.åÂÚË͇ í‡Û·‡-NUTåÂÚËÍÓÈ í‡Û·‡-NUT ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl S O(3)-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 =r−m 21 r+m 2dr + (r 2 − m 2 )(σ12 + σ 22 ) + 4 m 2σ3 ,r+m4 r−m„‰Â m – ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò t ÙÓÏÛÎÓÈ1r =m+.2 mtåÂÚË͇ ùÛ„Û˜Ë Ë ï˝ÌÒÓ̇åÂÚËÍÓÈ ùۄۘ˖ï˝ÌÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl SO(3)-ËÌ‚‡Ë‡ÌÚ̇flÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 = 2 a 4 2dr 222r+++σσ121 − r σ 3 ,4a 1− rÉ·‚‡ 7.
êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË139„‰Â α – ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò ÍÓÓ‰Ë̇ÚÓÈ t ÙÓÏÛÎÓÈr2 = a2 coth(a2 t).åÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ˜ÂÚ˚ÂıÏÂÌÓÈ ÏÂÚËÍÓÈ ä‡Î‡·Ë.äÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇äÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛÙÛÌ͈Ëfl F : T ( M * ) → + ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n Ò ‡Ì‡ÎËÚ˘ÂÒÍËÏ͇҇ÚÂθÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ T(M n ), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ:((1. F2 fl‚ÎflÂÚÒfl „·‰ÍÓÈ Ì‡ M n ,, „‰Â M n – ‰ÓÔÓÎÌÂÌË (‚ T(Mn )) ÌÛÎÂ‚Ó„Ó Ò˜ÂÌËfl.2. F(p, x) > 0 ‰Îfl ‚ÒÂı Ë p ∈ Mn Ë .x ∈ M pn .3. F(p, λx) = |λ|F(p, x) ‰Îfl ‚ÒÂı p ∈ Mn , x ∈ Tp(M n ) Ë λ ∈ .îÛÌ͈Ëfl G = F2 ÏÓÊÂÚ ·˚Ú¸ ÎÓ͇θÌÓ ‚˚‡ÊÂ̇ ‚ ÚÂÏË̇ı ÍÓÓ‰Ë̇Ú(p1 , ..., pn , x1 , ..., xn); ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ÍÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ 1 ∂ 2 F 2 ∂x ∂ iÏÂÚËÍË Á‡‰‡ÂÚÒfl χÚˈÂÈ ((Gij )) = , ̇Á˚‚‡ÂÏÓÈ Ï‡ÚˈÂÈ ã‚Ë. 2 ∂xi ∂x j ÖÒÎË Ï‡Úˈ‡ ((Gij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÚÓ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ F ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ.èÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËflèÛÒÚ¸ d – ÔÓÎÛÏÂÚË͇, Á‡‰‡Ì̇fl ̇ ÌÂÍÓÚÓÓÏ Í·ÒÒ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ, ÒÓ‰Âʇ˘ÂÏ Â‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z |< 1}.
é̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ, ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ, ÂÒÎË ‰Îflβ·Ó„Ó ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÓÚÓ·‡ÊÂÌËfl f : M1 → M2 , M1 , M2 ∈ ̇‚ÂÌÒÚ‚Ó d(f(p),f(q)) ≤ d(p, q) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı p, q ∈ M1 (ÒÏ. åÂÚË͇ äÓ·‡È‡¯Ë, åÂÚË͇䇇ÚÂÓ‰ÓË, åÂÚË͇ ÇÛ).åÂÚË͇ äÓ·‡È‡¯ËèÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ n. èÛÒÚ¸ (∆, D) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: ∆ → D, „‰Â ∆ = {z ∈ |z| < 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ.åÂÚË͇ äÓ·‡È‡¯Ë (ËÎË ÏÂÚË͇ äÓ·‡È‡¯Ë – êÓȉÂ̇) FK ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇flÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl ͇ÍFK ( z, u) = inf{α > 0 : ∃f ∈ ( ∆, D), f (0) = z, αf ′(0) = u}‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n . é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË.
FK ( z, u) ≥ FC ( z, u), „‰Â FC – ÏÂÚË͇ 䇇ÚÂÓ‰ÓË. ÖÒÎË Dud ( z, u)‚˚ÔÛÍÎa Ë d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ≤ FK ( z, u) = FC ( z, u) ≤α2≤ d ( z, u).ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë Á‡‰‡ÂÚÒfl ͇ÍFK ( p, u) = inf{α > 0 : ∃f ∈ ( ∆, M n ), f (0) = p, αf ′(0) = u} ‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ T p (M n ).FK(p, u) fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ u, ̇Á˚‚‡ÂÏÓÈ ÔÓÎÛÌÓÏÓÈäÓ·‡È‡¯Ë.