Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 28
Текст из файла (страница 28)
Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÔË̈ËÔˇθÌÓ Ô‰ÔÓÎÓÊÂÌËÂ, ˜ÚÓ122ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflÔÓÒÚ‡ÌÒÚ‚Ó–‚ÂÏfl ÏÓÊÂÚ ÏÓ‰ÂÎËÓ‚‡Ú¸Òfl Í‡Í ÎÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË ÒÒ˄̇ÚÛÓÈ (1, 3). èÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó 1,3 Ò ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ÎÓÂ̈‚‡ ÏÌÓ„ÓÓ·‡ÁËfl.åÂÚË͇ éÒÒÂχ̇–ãÓÂ̈‡åÂÚËÍÓÈ éÒÒÂχ̇–ãÓÂ̈‡ ̇Á˚‚‡ÂÚÒfl ÎÓÂ̈‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈÚÂÌÁÓ ËχÌÓ‚ÓÈ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl ÓÒÒÂχÌÓ‚˚Ï. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËËfl ÓÔ‡ÚÓ‡ üÍÓ·Ë ( x ) : y → R( y, x ) x Ì Á‡‚ËÒflÚ ÓÚ Â‰ËÌ˘Ì˚ı‚ÂÍÚÓÓ‚ ı.ãÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ ÓÒÒÂχÌÓ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓfl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚.åÂÚË͇ ÅÎfl¯ÍÂåÂÚË͇ ÅÎfl¯Í ̇ Ì‚˚ÓʉÂÌÌÓÈ „ËÔÂÔÓ‚ÂıÌÓÒÚË ÂÒÚ¸ ÔÒ‚‰ÓËχÌÓ‚‡ÏÂÚË͇, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ‡ÙÙËÌÌÓÈ ÌÓχθ˛ ‚ÎÓÊÂÌËfl φ : M n → n +1 , „‰Â Mnfl‚ÎflÂÚÒfl n-ÏÂÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, ‡ n+1 ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó.èÓÎÛËχÌÓ‚‡ ÏÂÚË͇èÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‚˚ÓʉÂÌ̇fl ËχÌÓ‚‡ ÏÂÚË͇, Ú.Â.
ÒÓ‚ÓÍÛÔÌÓÒÚ¸ÔÓÎÓÊËÚÂθÌÓ ÔÓÎÛÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ 〈 x, y 〉 p =gij ( p) xi y j∑i, j̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p (M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθdet(( gij )) = 0.èÓÎÛËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓÂÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ.åÓ‰Âθ˛ ÔÓÎÛËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó nd , d ≥ 1 (ËÌÓ„‰‡ Ó·ÓÁ̇˜‡ÂÏÓÂ Í‡Í nn − d ), Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓÂÔÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ ÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÍÓÚÓÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ, Ú‡ÍÓ ˜ÚÓ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ì‡‰ÎÂʇ˘ËÏ Ó·‡ÁÓÏ ‚˚·‡ÌÌÓÏÛ ·‡ÁËÒÛ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 x, x 〉 ‚ÂÍÚÓ‡ ̇Ò·fl ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ 〈 x, x 〉 =n−d∑xi2 .
èË ˝ÚÓÏ d ≥ 1 ˜ËÒÎÓ Ì‡Á˚‚‡ÂÚÒfl ‰ÂÙÂÍÚÓÏi =1(ËÎË ÔÓÎÓÊËÚÂθÌ˚Ï ‰ÂÙˈËÚÓÏ) ÔÓÒÚ‡ÌÒÚ‚‡.åÂÚË͇ ÉÛ¯Ë̇åÂÚËÍÓÈ ÉÛ¯Ë̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛËχÌÓ‚‡ ÏÂÚË͇ ̇ 2, Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏds 2 = dx12 +δx 22.x12èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏÏÌÓ„ÓÓ·‡ÁËË M n – ‚˚ÓʉÂÌ̇fl ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸gij ( p) xi y j ̇‚˚ÓʉÂÌÌ˚ı ÌÂÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y p =∑i, j123É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı Tp ( M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(gij) = 0.àÏÂÌÌÓ, ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈÏÂÚËÍÓÈ.èÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn ,Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ.åÓ‰Âθ˛ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛÔÒ‚‰Ó‚ÍÎˉӂÓÔÓÒÚ‡ÌÒÚ‚Ó ln1 ,..., lr , Ú.Â.
‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Óm1 ,..., m r −1n, Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ rÒ͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y a =ε ia xia yia , „‰Â a = 1, ..., r, 0 = m0 < ... < mr = n, ia == m a–1 + 1, ..., ma, ε ia = ±1 Ë –1 ÒÂ‰Ë ˜ËÒÂÎ ε ia ‚ÒÚ˜‡ÂÚÒfl la ‡Á.
èÓËÁ‚‰ÂÌËÂ∑x, y a ÓÔ‰ÂÎÂÌÓ ‰Îfl ÚÂı ‚ÂÍÚÓÓ‚, ‰Îfl ÍÓÚÓ˚ı ‚Ò ÍÓÓ‰Ë̇Ú˚ xi , i ≤ ma −1 ËÎËi > ma + 1, ‡‚Ì˚ ÌÛβ. è‚˚È Ò͇ÎflÌ˚È Í‚‡‰‡Ú ÔÓËÁ‚ÓθÌÓ„Ó ‚ÂÍÚÓ‡ ıfl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ Í‚‡‰‡Ú˘ÌÓÈ ÙÓÏÓÈx, x1=−l1∑i =1xi2 +n−d∑x 2j . óËÒÎÓj = l1 +1l1 ≥ 0 ̇Á˚‚‡ÂÚÒfl Ë̉ÂÍÒÓÏ, ‡ ˜ËÒÎÓ d = n – m1 – ‰ÂÙÂÍÚÓÏ ÔÓÒÚ‡ÌÒÚ‚‡. ÖÒÎËl1 = ... = lr = 0, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚‡ nm Ë nk , l Ë Ì‡Á˚‚‡˛ÚÒfl Í‚‡ÁË‚ÍÎˉӂ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË.èÓÎÛÔÒ‚‰ÓÌ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ln1 ,..., lrÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌÓ Í‡Ím1 ,..., m r −1„ËÔÂÒÙ‡ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ln1 ,..., lrÒ ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚÓ˜-m1 ,..., m r −1͇ÏË.
ÖÒÎË l1 = ... = lr, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÎÛ˝ÎÎËÔÚ˘ÂÒÍËÏ(ËÎË ÔÓÎÛÌ‚ÍÎˉӂ˚Ï) ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛ„ËÔ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.îËÌÒÎÂÓ‚‡ ÏÂÚË͇ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË MN , ‚ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp(M n ), p ∈ Mn Ò̇·ÊÂÌÓ ·‡Ì‡ıÓ‚ÓÈÌÓÏÓÈ || ⋅ ||, Ú‡ÍÓÈ ˜ÚÓ ·‡Ì‡ıÓ‚‡ ÌÓχ Í‡Í ÙÛÌ͈Ëfl ÔÓÁˈËË, fl‚ÎflÂÚÒfl „·‰ÍÓÈ ËχÚˈ‡ (gij),gij = gij ( p, x ) =1 ∂ 2 || x ||2,2 ∂xi ∂x jfl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ‰Îfl β·Ó„Ó p ∈ Mn Ë Î˛·Ó„Ó x ∈ Tp (M n ).îËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ Mn ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ·‡Ì‡ıÓ‚˚ı ÌÓÏ || ⋅ || ͇̇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p Mn , ÔÓ Ó‰ÌÓÈ ‰Îfl Í‡Ê‰Ó„Ó p ∈ Mn . ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ÙÓÏÛds 2 =∑ gij dxi dx j .i, jîËÌÒÎÂÓ‚‡ ÏÂÚË͇ ÏÓÊÂÚ Á‡‰‡‚‡Ú¸Òfl Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl F(p, x) ÍÓÓ‰ËÌ‡Ú ÚÓ˜ÍË p ∈ Mn Ë ÍÓÏÔÓÌÂÌÚ ‚ÂÍÚÓ‡124ó‡ÒÚ¸ II.
ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflx ∈ T p (M n ), ‰ÂÈÒÚ‚Û˛˘Â„Ó ‚ ÚӘ͠. îÛÌ͈Ëfl F(p, x) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ Ó‰ÌÓÓ‰ÌÓÈ Ô‚ÓÈ ÒÚÂÔÂÌË ‚ ı: F(p, λx) = λF(p, x) ‰Îfl Í‡Ê‰Ó„Ó λ > 0. á̇˜ÂÌËÂF(p, x) ËÌÚÂÔÂÚËÛÂÚÒfl Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ ı. îËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ 1 ∂ 2 F 2 ( p, x ) nËÏÂÂÚ ÙÓÏÛ ( gij ) = . ÑÎË̇ ÍË‚ÓÈ γ : [0, 1] → M Á‡‰‡ÂÚÒfl Í‡Í 2 ∂xi dx j 1dp ∫ F p, dt dt. ÑÎfl ͇ʉÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ‚0ÔÂÂÏÂÌÌ˚ı ı fl‚ÎflÂÚÒfl ËχÌÓ‚˚Ï.îËÌÒÎÂÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ËχÌÓ‚ÓÈ ÏÂÚËÍË, „‰Â Ó·˘Â ÓÔ‰ÂÎÂÌË ‰ÎËÌ˚ || x || ‚ÂÍÚÓ‡ x ∈ Tp ( M n ) Ì ӷflÁ‡ÚÂθÌÓ Á‡‰‡ÂÚÒfl ‚ ‚ˉ ͂‡‰‡ÚÌÓ„ÓÍÓÌfl ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚, Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â.îËÌÒÎÂÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË (ËÎË ÙËÌÒÎÂÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) – ˝ÚÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÙËÌÒÎÂÓ‚ÓÈÏÂÚËÍÓÈ.
íÂÓËfl ÙËÌÒÎÂÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚ÓÈ „ÂÓÏÂÚËÂÈ.ê‡Á΢ˠÏÂÊ‰Û ËχÌÓ‚˚Ï Ë ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓÔ‚Ó ÎÓ͇θÌÓ ‚‰ÂÚ Ò·fl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ ‚ÚÓÓ – ͇ÍÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ËÎË, ‡Ì‡ÎËÚ˘ÂÒÍË, ‚ ÚÓÏ, ˜ÚÓ ˝ÎÎËÔÒÓË‰Û ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓËÁ‚Óθ̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸, ‚ ͇˜ÂÒڂˆÂÌÚ‡ ÍÓÚÓÓÈ ‚ÁflÚÓ Ì‡˜‡ÎÓ ÍÓÓ‰Ë̇Ú.é·Ó·˘ÂÌÌ˚Ï ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ, ̇ ÍÓÚÓÛ˛ ̇Í·‰˚‚‡˛ÚÒfl ÓÔ‰ÂÎÂÌÌ˚ ӄ‡Ì˘ÂÌËfl ‚ ÓÚÌÓ¯ÂÌËË Ôӂ‰ÂÌËfl ͇ژ‡È¯Ëı ÍË‚˚ı, Ú.Â. ÍË‚˚ı, ‰ÎËÌ˚ ÍÓÚÓ˚ı ‡‚Ì˚ ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Ëı ÍÓ̘Ì˚ÏË ÚӘ͇ÏË.
í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚Íβ˜‡˛Ú ‚ Ò·flÔÓÒÚ‡ÌÒÚ‚‡ „ÂÓ‰ÂÁ˘ÂÒÍËı, ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ú.Ô. é·Ó·˘ÂÌÌ˚ ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÓÚ΢‡˛ÚÒfl ÓÚ ÙËÌÒÎÂÓ‚˚ı Ì ÚÓθÍÓ ·Óθ¯ÂÈ ÒÚÂÔÂ̸˛Ó·Ó·˘ÂÌËfl, ÌÓ Ë ÚÂÏ, ˜ÚÓ ÓÌË ÓÔ‰ÂÎfl˛ÚÒfl Ë ËÒÒÎÂ‰Û˛ÚÒfl Ò ÔÓÏÓ˘¸˛ ÏÂÚËÍË,·ÂÁ ËÒÔÓθÁÓ‚‡ÌËfl ÍÓÓ‰Ë̇Ú.åÂÚË͇ äÓÔËÌÓÈåÂÚËÍÓÈ äÓÔËÌÓÈ Ì‡Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FKr ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏn-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í∑ gij xi x ji, j∑ bi ( p) xii‰Îfl β·˚ı p ∈Ëx ∈b(p) = (bi(p)) – ‚ÂÍÚÓÌÓ ÔÓÎÂ.MnTp(M n ),„‰Â (gij) – fl‚ÎflÂÚÒfl ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ ËåÂÚË͇ ê‡Ì‰ÂÒ‡åÂÚË͇ ê‡Ì‰ÂÒ‡ – ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRa ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í∑ gij xi x j + ∑ bi ( p) xii, ji‰Îfl β·˚ı p ∈ M n Ë x ∈ T p (M n ), „‰Â (gij) – ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ Ë b(p) == (bi(p)) – ‚ÂÍÚÓÌÓ ÔÓÎÂ.125É·‚‡ 7.
êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍËåÂÚË͇ äÎÂÈ̇åÂÚËÍÓÈ äÎÂÈ̇ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡ÂnB = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í(|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 21− || x)||22‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓÂÒ͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n.åÂÚË͇ îÛÌ͇åÂÚËÍÓÈ îÛÌ͇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRu ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓϯ‡Â ‚ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í()|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2 + 〈 x, y 〉1− || x||22‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓÂÒ͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n.
ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇.åÂÚË͇ òÂ̇ÑÎfl ‰‡ÌÌÓ„Ó ‚ÂÍÚÓ‡ a ∈ n , || a ||2 < 1 ÏÂÚËÍÓÈ òÂ̇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ÏÂÚË͇ FSh ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â B n = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í()|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2 + 〈 x, y 〉1− || x||22+〈 a, y 〉1 + 〈 a, x 〉‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓÂÒ͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇. èË a = 1 Ó̇ Ô‚‡˘‡ÂÚÒfl ‚ ÏÂÚËÍÛ îÛÌ͇.åÂÚË͇ Å‚‡Î¸‰‡åÂÚËÍÓÈ Å‚‡Î¸‰‡ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FBe ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â B n = {x ∈ n: || x ||2 < 1} ‚ n, Á‡‰‡‚‡Âχfl ͇Í() || y ||2 − || x ||2 || y ||2 −〈 x, y 〉 2 + 〈 x, y 〉222(1− || x || )2 22(|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2)‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓÂÒ͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n.
ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇.Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ͇ʉ‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÔÓÓʉ‡ÂÚÔÛθ‚ÂËÁ‡ˆË˛ (Ó·˚˜ÌÓ ӉÌÓÓ‰ÌÓ ‰ËÙÙÂÂ̈ˇθÌÓ ۇ‚ÌÂÌË ‚ÚÓÓ„Ó ÔÓ∂∂fl‰Í‡) yi− 2G i, ÍÓÚÓÓÈ ÓÔ‰ÂÎfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÂ. îËÌÒÎÂÓ‚‡ ÏÂÚË͇∂xi∂yi126ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Å‚‡Î¸‰‡, ÂÒÎË ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y)1fl‚Îfl˛ÚÒfl Í‚‡‰‡Ú˘Ì˚ÏË ÔÓ y ∈ Tx(Bn ) ‚ β·ÓÈ ÚӘ͠x ∈ M n , Ú.Â. G i = Γ jki ( x ) y i y k .2ä‡Ê‰‡fl ÏÂÚË͇ Å‚‡Î¸‰‡ ‡ÙÙËÌÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÂÍÓÚÓÓÈ ËχÌÓ‚ÓÈ ÏÂÚËÍÂ.åÂÚË͇ Ñۄ·҇åÂÚËÍÓÈ Ñۄ·҇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y) ËÏÂ˛Ú ‚ˉGi =1 iΓ jk ( x ) yi yk + P( x, y) yi .2ä‡Ê‰‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ÍÓÚÓ‡fl ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÏÂÚËÍ Å‚‡Î¸‰‡, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ñۄ·҇.
ä‡Ê‰‡fl ËÁ‚ÂÒÚ̇fl ÏÂÚË͇ Ñۄ·҇ fl‚ÎflÂÚÒfl(ÎÓ͇θÌÓ) ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ ÏÂÚËÍ Å‚‡Î¸‰‡.åÂÚË͇ ŇȇÌÚ‡èÛÒÚ¸ α – Û„ÓÎ Ò | α | <πË ÔÛÒÚ¸ ‰Îfl β·˚ı x, y ∈ n2()2A = || y ||24 sin 2 2α + || y ||22 cos 2α + || x ||22 || y ||22 −〈 x, y 〉 2 ,B = || y ||24 cos 2α + || x ||22 || y ||22 −〈 x, y 〉 2 ,C = 〈 x, y 〉 sin 2α,D = || y ||22 +2 || x ||22 cos 2α + 1.íÓ„‰‡ (ÔÓÂÍÚË‚ÌÛ˛) ÙËÌÒÎÂÓ‚Û ÏÂÚËÍÛ F Ï˚ ÔÓÎÛ˜ËÏ Í‡ÍA + B C2 C++ . D2DDç‡ ‰‚ÛÏÂÌÓÈ Â‰ËÌ˘ÌÓÈ ÒÙ S2 Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Å‡È‡ÌÚ‡.åÂÚË͇ 䇂‡„Û˜ËåÂÚËÍÓÈ ä‡‚‡„Û˜Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „·‰ÍÓÏ n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ,Á‡‰‡‚‡Âχfl ˝ÎÂÏÂÌÚÓÏ ‰Û„Ë ds „ÛÎflÌÓÈ ÍË‚ÓÈ x = x (t ), t ∈[t0 , t1 ] Ë ‚˚‡ÊÂÌ̇flÙÓÏÛÎÓÈ dxdkxds = F x, ,..., k dt,dt dtk„‰Â ÏÂÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl F Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎÓ‚ËflÏ ñÂÏÂÎÓ:∑ sx (s) F(s)i = F,x =1d s xi∂F s ( s − r +1)iF( s )i = 0, x ( s )i = xs , F( s )i =( s )i Ë r = 2, ..., k.