Е. Деза_ М.М. Деза. Энциклопедический словарь расстояний (2008) (1185330), страница 25
Текст из файла (страница 25)
ËÏÂÂÚ ‚ÒÂ„Ó Ó‰ÌÛ „‡Ì˘ÌÛ˛ ÚÓ˜ÍÛ.åÂÚË͇ î‡̉‡ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ î‡̉‡ ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Íinfγ ∈Γ|| a − b ||2| dz |,∫ a,supb ∈∂D || z − a ||2 || z − b ||2γ110ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ÏÌÓÊÂÒÚ‚Û Γ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı ËÛ ‚ D, ∂D – „‡Ìˈf D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓÈ, Ú.Â. ÒÛ˘ÂÒÚ‚Û˛Ú ÍÓÌÒÚ‡ÌÚ˚ C, C', Ú‡ÍË ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ x, y ∈ DÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ γ ∈ D ‰ÎËÌ˚ l(γ), Ì Ô‚ÓÒıÓ‰fl˘ÂÈ C | x − y |, Ë Ì‡‚ÂÌÒÚ‚Ó min{l( γ ( x, z )), l( γ ( z, y))} ≤ C ′ρ( z ) ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl ‚ÒÂız ∈ γ.åÂÚË͇ ëÂÈÚÂ̇ÌÚ‡ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ëÂÈÚÂ̇ÌÚ‡ (ËÎË ÏÂÚË͇ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í || a − x ||2 || b − y ||2 sup ln 1 +, || a − b ||2 || x − y ||2 a, b ∈∂D„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n.чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û.åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡èÛÒÚ¸ D ⊂ n , D ≠ n – ÌÂÍÓÚÓ‡fl ӷ·ÒÚ¸ Ò „‡ÌˈÂÈ ∂D, Ëϲ˘‡fl ÔÓÎÓÊËÚÂθÌÛ˛ ÂÏÍÓÒÚ¸.åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡ (ɇÎ, 1960) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl ͇Íinf M ( ∆(Cxy , ∂D, D)),C xy„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë C xy ÂÒÚ¸ ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘ËÂÒ‚ÓÈÒÚ‚‡: Cxy = γ ([0, 1]), γ (0) = x Ë γ (1) = y (ÒÏ.
ùÍÒÚÂχθ̇fl ÏÂÚË͇, „Î. 8).чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡B n = {x ∈ n : 〈 x, x 〉 < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 .ÇÚÓ‡fl ÏÂÚË͇ î‡̉‡èÛÒÚ¸ D ⊂ n , D ≠ n – ӷ·ÒÚ¸, ڇ͇fl ˜ÚÓ | n \ {D} | ≥ 2. ÇÚÓÓÈ ÏÂÚËÍÓÈî‡̉‡ ·Û‰ÂÚ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í CinfC M ( ∆(Cx , Cy , D) x, y1 / 1− n,„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë Cz (z = x, y) ÂÒÚ¸ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘ËÂÒ‚ÓÈÒÚ‚‡: Cz = ([0, 1])), z ∈| γ z | Ë γ z (t ) → ∂D ÔË t → 1 (ÒÏ. ùÍÒÚÂχθ̇fl ÏÂÚË͇,„Î.
8).чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡nB = {x ∈ n : 〈 x, x 〉 < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 .É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË111臇·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ臇·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ÏÂÚË͇ ̇ n+1, ‡ÒÒχÚË‚‡ÂÏÓÏ Í‡Í n × ,ÓÔ‰ÂÎflÂχfl ͇Í( x1 − y1 )2 + ... + ( x n − yn )2 + | t x − t y |1 / m ,m ∈‰Îfl β·˚ı n × .èÓÒÚ‡ÌÒÚ‚Ó n × ÏÓÊÂÚ ËÌÚÂÔÂÚËÓ‚‡Ú¸Òfl Í‡Í ÏÌÓ„ÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl.é·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl Á̇˜ÂÌË m = 2. ëÛ˘ÂÒÚ‚Û˛Ú ÌÂÍÓÚÓ˚ ‚‡Ë‡ÌÚ˚ Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl, ̇ÔËÏ ԇ‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂsup{| x1 − y1 |, | x 2 − y2 |1 / 2}̇ 2 (ÒÏ. Ú‡ÍÊ åÂÚË͇ ÍÓ‚‡ êËÍχ̇, „Î. 19) ËÎË Ô‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌËÂÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ̇ 3+ = {x ∈ 3 : x1 ≥ 0}, Á‡‰‡‚‡ÂÏÓ ͇Í| x1 − y1 | + | x 2 − y2 |+x1 + x 2 + | x 2 − y2| x3 − y3 |.É·‚‡ 7êËχÌÓ‚˚ Ë ˝ÏËÚÓ‚˚ ÏÂÚËÍËêËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÏÂÌÓ ӷӷ˘ÂÌË ‚ÌÛÚÂÌÌÂÈ „ÂÓÏÂÚËË ‰‚ÛÏÂÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ 2 .
é̇ Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ‚¢ÂÒÚ‚ÂÌÌ˚ı „·‰ÍËı ÏÌÓ„ÓÓ·‡ÁËÈ, Ò̇·ÊÂÌÌ˚ı ËχÌÓ‚˚ÏË ÏÂÚË͇ÏË,Ú.Â. ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ((gij)) ̇ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË ÍÚÓ˜ÍÂ. ÉÂÓÏÂÚËfl Ú‡ÍËı (ËχÌÓ‚˚ı) ÏÌÓ„ÓÓ·‡ÁËÈ ·‡ÁËÛÂÚÒfl ̇ ÎËÌÂÈÌÓÏ˝ÎÂÏÂÌÚ ds 2 =gij dxi dx j . ë Â„Ó ÔÓÏÓ˘¸˛ ÓÔ‰ÂÎfl˛ÚÒfl, ‚ ˜‡ÒÚÌÓÒÚË, ÎÓ͇θÌ˚Â∑ijÔÓÌflÚËfl ۄ·, ‰ÎËÌ˚ ÍË‚˚ı Ë Ó·˙Âχ. àÁ ÌËı ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ÏÓ„ÛÚ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ‰Û„ËÂ, „ÎÓ·‡Î¸Ì˚ ‚Â΢ËÌ˚. í‡Í, ‚Â΢Ë̇ ÏÓÊÂÚ ·˚Ú¸‡ÒÒÏÓÚÂ̇ Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ (dx1,..., dx n ); ‰ÎË̇ ‰Û„Ë ÍË‚ÓÈ γ ‚˚‡Ê‡ÂÚÒfl ÚÂÔ¸͇Ígij dxi dx j ;∫ ∑i, jÚÓ„‰‡ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËËγÁ‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ÏÌÓ„ÓÓ·‡ÁËfl.í‡ÍËÏ Ó·‡ÁÓÏ, ËχÌÓ‚‡ ÏÂÚË͇ Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ÏÂÚËÍÓÈ, ÌÓ ÔÓÓʉ‡ÂÚÓ·˚˜ÌÛ˛ ÏÂÚËÍÛ, ËÏÂÌÌÓ, ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ, ÍÓÚÓÛ˛ ËÌÓ„‰‡ ̇Á˚‚‡˛ÚËχÌÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ, ̇ β·ÓÏ Ò‚flÁÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË; ËχÌÓ‚‡ÏÂÚË͇ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ËχÌÓ‚‡‡ÒÒÚÓflÌËfl.Ç Í‡˜ÂÒÚ‚Â ÓÒÓ·˚ı ÒÎÛ˜‡Â‚ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË ‡ÒÒχÚË‚‡˛ÚÒfl ‰‚‡Òڇ̉‡ÚÌ˚ı ÒÎÛ˜‡fl – ˝ÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl Ë „ËÔ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËflÌ‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË, ‡ Ú‡ÍÊ ҇χ ‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl.ÖÒÎË ·ËÎËÌÂÈÌ˚ ÙÓÏ˚ ((gij)) fl‚Îfl˛ÚÒfl Ì‚˚ÓʉÂÌÌ˚ÏË, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌ˚ÏË, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÒ‚‰ÓËχÌÓ‚Û „ÂÓÏÂÚ˲.
ÑÎfl ‡ÁÏÂÌÓÒÚË 4 (Ë Ò˄̇ÚÛ˚ (1, 3)) ڇ͇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl ÓÒÌÓ‚Ì˚Ï Ó·˙ÂÍÚÓÏ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. ÖÒÎË ds = F( x1 ,..., x n , dx1 ,..., dx n ), „‰Â F – ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ ÌÂθÁfl Á‡‰‡Ú¸ Í‡Í Í‚‡‰‡ÚÌ˚ÈÍÓÂ̸ ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ (Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÈ„ÂÓÏÂÚËË), ÚÓ Ï˚ ÔÓÎÛ˜ËÏ ÙËÌÒÎÂÓ‚Û „ÂÓÏÂÚ˲, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË.ùÏËÚÓ‚‡ „ÂÓÏÂÚËfl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ,Ò̇·ÊÂÌÌ˚ı ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË, Ú.Â.
ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ Ì‡ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı,ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. éÌË fl‚Îfl˛ÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ‡Ì‡ÎÓ„ÓÏËχÌÓ‚ÓÈ „ÂÓÏÂÚËË. éÒÓ·˚È Í·ÒÒ ˝ÏËÚÓ‚˚ı ÏÂÚËÍ Ó·‡ÁÛ˛Ú ÏÂÚËÍËäÂı·, Ëϲ˘Ë Á‡ÏÍÌÛÚÛ˛ ÙÛ̉‡ÏÂÌڇθÌÛ˛ ÙÓÏÛ w. é·Ó·˘ÂÌË ˝ÏËÚÓ‚˚ıÏÂÚËÍ ‰‡ÂÚ Ì‡Ï ÍÓÏÔÎÂÍÒÌ˚ ÙËÌÒÎÂÓ‚˚ ÏÂÚËÍË, ÍÓÚÓ˚ ÌÂθÁfl ‚˚‡ÁËÚ¸‚ ÚÂÏË̇ı ·ËÎËÌÂÈÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ.É·‚‡ 7.
êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË1137.1. êàåÄçéÇõ åÖíêàäà à éÅéÅôÖçàüèÓËÁ‚ÓθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò „‡ÌˈÂÈ Mn ÂÒÚ¸ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÓÚÍ˚ÚÛ˛ ÓÍÂÒÚÌÓÒÚ¸,„ÓÏÂÓÏÓÙÌÛ˛ ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û n , ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚ÛÁ‡ÏÍÌÛÚÓ„Ó ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ n. åÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ, Ëϲ˘ËıÓÚÍ˚Ú˚ ÓÍÂÒÚÌÓÒÚË, „ÓÏÂÓÏÓÙÌ˚ n , ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÌÛÚÂÌÌËıÚÓ˜ÂÍ ÏÌÓ„ÓÓ·‡ÁËfl; ÓÌÓ ‚Ò„‰‡ fl‚ÎflÂÚÒfl ÌÂÔÛÒÚ˚Ï. ÑÓÔÓÎÌÂÌË ‚ÌÛÚÂÌÌ„ÓÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ Ì‡Á˚‚‡ÂÚÒfl „‡ÌˈÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ (n – 1)ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ.
ÖÒÎË „‡Ìˈ‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÛÒÚ‡, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂωÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚.åÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ˚Ï, ÂÒÎË ÓÌÓ ÍÓÏÔ‡ÍÚÌÓ, ËÓÚÍ˚Ú˚Ï – Ë̇˜Â.éÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ‚ÏÂÒÚÂ Ò „ÓÏÂÓÏÓÙËÁÏÓÏ ÏÂÊ‰Û ‰‡ÌÌ˚Ï ÓÚÍ˚Ú˚ÏÏÌÓÊÂÒÚ‚ÓÏ Ë ÌÂÍÓÚÓ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ ËÁ n ̇Á˚‚‡ÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ͇ÚÓÈ. ëÂÏÂÈÒÚ‚Ó ÔÓÍ˚‚‡˛˘Ëı ÏÌÓÊÂÒÚ‚Ó Mn Í‡Ú Ì‡Á˚‚‡ÂÚÒfl ‡Ú·ÒÓÏ Ì‡ Mn .ÉÓÏÂÓÏÓÙËÁÏ˚ ‰‚Ûı ÔÂÂÍ˚‚‡˛˘ËıÒfl Í‡Ú ‰‡˛Ú Ì‡Ï ÓÚÓ·‡ÊÂÌË ӉÌÓ„ÓÔÓ‰ÏÌÓÊÂÒÚ‚‡ n ‚ ÌÂÍÓ ‰Û„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó n. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËflÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ̇Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚ÏÏÌÓ„ÓÓ·‡ÁËÂÏ. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËfl fl‚Îfl˛ÚÒfl k ‡Á ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl C k ÏÌÓ„ÓÓ·‡ÁËÂÏ; ÂÒÎË ÓÌË·ÂÒÍÓ̘ÌÓ ˜ËÒÎÓ ‡Á ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „·‰ÍËÏÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË C∞ ÏÌÓ„ÓÓ·‡ÁËÂÏ).ÄÚÎ‡Ò ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡ÂÚÒfl ÓËÂÌÚËÓ‚‡ÌÌ˚Ï, ÂÒÎË ‚Ò ÍÓÓ‰Ë̇ÚÌ˚ÂÔÂÓ·‡ÁÓ‚‡ÌËfl ÏÂÊ‰Û Í‡Ú‡ÏË fl‚Îfl˛ÚÒfl ÔÓÎÓÊËÚÂθÌ˚ÏË, Ú.Â.
flÍÓ·Ë‡Ì ÍÓÓ‰Ë̇ÚÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ͇ڇÏË ÔÓÎÓÊËÚÂÎÂÌ ‚ β·ÓÈÚÓ˜ÍÂ. éËÂÌÚËÛÂÏ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂ, ÍÓÚÓÓ ‰ÓÔÛÒ͇ÂÚ Ì‡Î˘Ë ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡Ú·҇.åÌÓ„ÓÓ·‡ÁËfl ̇ÒÎÂ‰Û˛Ú ÏÌÓ„Ë ÎÓ͇θÌ˚ ҂ÓÈÒÚ‚‡ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡.Ç ˜‡ÒÚÌÓÒÚË, ÓÌË fl‚Îfl˛ÚÒfl ÎÓ͇θÌÓ ÔÛÚ¸-Ò‚flÁÌ˚ÏË, ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË ËÎÓ͇θÌÓ ÏÂÚËÁÛÂÏ˚ÏË.
ã˛·Ó „·‰ÍÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ËÁÓÏÂÚ˘ÂÒÍË‚ÎÓÊËÏÓ (ç˝¯, 1956) ‚ ÌÂÍÓÚÓÓ ÍÓ̘ÌÓÏÂÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó.ë ͇ʉÓÈ ÚÓ˜ÍÓÈ Ì‡ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË ‡ÒÒÓˆËËÓ‚‡Ì˚ ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ‰‚ÓÈÒÚ‚ÂÌÌÓ ÂÏÛ ÍÓ-͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. îÓχθÌÓ, ÔÛÒÚ¸ Mn – ëÎ ÏÌÓ„ÓÓ·‡ÁËÂ, k ≥ 1, Ë – ÌÂÍÓÚÓ‡fl ÚӘ͇ ËÁ Mn . ᇉ‡‰ËÏ͇ÚÛ ϕ : U → n , „‰Â U – ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ Mn , ÒÓ‰Âʇ˘ÂÂÚÓ˜ÍÛ . è‰ÔÓÎÓÊËÏ, ˜ÚÓ ‰‚ ÍË‚˚ γ 1 : ( −1, 1) → M n Ë γ 2 : ( −1, 1) → M n ÒÓÁ̇˜ÂÌËflÏË γ 1 (0) = γ 2 (0) = p Á‡‰‡Ì˚ Ú‡Í, ˜ÚÓ Ó·Â ‚Â΢ËÌ˚ ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 fl‚Îfl˛ÚÒfl‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË ‚ ÚӘ͠0.
Ç ˝ÚÓÏ ÒÎÛ˜‡Â γ1 Ë γ2 ̇Á˚‚‡˛ÚÒfl ͇҇ÚÂθÌ˚ÏË ‚ÚӘ͠0, ÂÒÎË Ó·˚˜Ì˚ ÔÓËÁ‚Ó‰Ì˚ ‰Îfl ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 ÒÓ‚Ô‡‰‡˛Ú ‚ 0:(ϕ ⋅ γ 1 )′ (0) = (ϕ ⋅ γ 2 )′ (0). ÖÒÎË ÙÛÌ͈ËË ϕ ⋅ γ i : ( −1, 1) → n , i = 1, 2 Á‡‰‡Ì˚ Ò ÔÓÏÓ˘¸˛n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ÍÓÓ‰Ë̇ÚÌ˚ı ÙÛÌ͈ËÈ (ϕ ⋅ γ i )1 (t ),..., (ϕ ⋅ γ i ) n (t ), ÚÓ ‚˚¯ÂÛ͇Á‡Ì d (ϕ ⋅ γ i )1 (t )d (ϕ ⋅ γ i ) n (t ) ÌÓ ÛÒÎÓ‚Ë ·Û‰ÂÚ ÓÁ̇˜‡Ú¸, ˜ÚÓ Ëı flÍӷˇÌ˚ ,..., ÒÓ‚Ô‡dtdt‰‡˛Ú ‚ 0.
ùÚÓ ÓÚÌÓ¯ÂÌË fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË, ‡ Í·ÒÒ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË γ'(0) ÍË‚ÓÈ γ ̇Á˚‚‡ÂÚÒfl ͇҇ÚÂθÌ˚Ï ‚ÂÍÚÓÓÏ ÏÌÓ„ÓÓ·‡ÁËfl114ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËflMn ‚ ÚӘ͠. ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp (M n ) ÏÌÓ„ÓÓ·‡ÁËfl M n ‚ ÚӘ͠ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ͇҇ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚ ‚ ÚӘ͠.
îÛÌ͈Ëfl( dϕ ) p : Tp ( M n ) → n , Á‡‰‡‚‡Âχfl ÛÒÎÓ‚ËÂÏ ( dϕ ) p ( γ ′(0)) = (ϕ ⋅ γ )′ (0), fl‚ÎflÂÚÒfl ·ËÂÍÚË‚ÌÓÈ Ë ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ‰Îfl ÔÂÂÌÂÒÂÌËfl ÓÔ‡ˆËÈ ÎËÌÂÈÌÓ„ÓÔÓÒÚ‡ÌÒÚ‚‡ ËÁ n ̇ T p (M n ).ÇÒ ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp(M n ), p ∈ Mn , "ÒÍÎÂÂÌÌ˚ ‚ÏÂÒÚÂ", Ó·‡ÁÛ˛Ú͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T(Mn ) ÏÌÓ„ÓÓ·‡ÁËfl Mn . ã˛·ÓÈ ˝ÎÂÏÂÌÚ ËÁ T(M n ) ÂÒÚ¸ Ô‡‡(p , v ), „‰Â v ∈Tp ( M n ).
ÖÒÎË ‰Îfl ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË U ÚÓ˜ÍË ÙÛÌ͈Ëflϕ : U → fl‚ÎflÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ Í‡ÚÓÈ, ÚÓ ÔÓÓ·‡Á V ÓÍÂÒÚÌÓÒÚË U ‚ T(Mn )‰ÓÔÛÒ͇ÂÚ ÓÚÓ·‡ÊÂÌË ψ : V → n × n , ÓÔ‰ÂÎflÂÏÓÂ Í‡Í ψ ( p, v) = (ϕ( p), dϕ( p)).ùÚÓ ÓÔ‰ÂÎflÂÚ ÒÚÛÍÚÛÛ „·‰ÍÓ„Ó 2n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ̇ T(M n ). Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T * ( M n ) ÏÌÓ„ÓÓ·‡ÁËflMn , ËÒÔÓθÁÛfl ‰Îfl ˝ÚÓ„Ó ÍÓ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp* ( M n ), p ∈ M n .ÇÂÍÚÓÌÓ ÔÓΠ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÂÒÚ¸ Ò˜ÂÌËÂ Â„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËflT(Mn ), Ú.Â. „·‰Í‡fl ÙÛÌ͈Ëfl f : M n → T ( M n ), ÍÓÚÓ‡fl ͇ʉÓÈ ÚӘ͠p ∈ Mn ÒÚ‡‚ËÚ ‚ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÍÚÓ v ∈Tp ( M n ).ë‚flÁ¸ (ËÎË ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl) fl‚ÎflÂÚÒfl ÒÔÓÒÓ·ÓÏ ÓÔ‰ÂÎÂÌËfl ÔÓËÁ‚Ó‰ÌÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ̇ ÏÌÓ„ÓÓ·‡ÁËË. îÓχθÌÓ, ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl∇ ‚ÂÍÚÓ‡ u (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚӘ͠p ∈ Mn ) ‚ ̇ԇ‚ÎÂÌËË ‚ÂÍÚÓ‡ v (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚÓÈ Ê ÚӘ͠) ÂÒÚ¸ Ô‡‚ËÎÓ, ÍÓÚÓÓ Á‡‰‡ÂÚ ÚÂÚËÈ ‚ÂÍÚÓ ‚ ÚӘ͠,̇Á˚‚‡ÂÏ˚È ∇ v u Ë Ó·Î‡‰‡˛˘ËÈ Ò‚ÓÈÒÚ‚‡ÏË ÔÓËÁ‚Ó‰ÌÓÈ.