Тарасов Л.В. Основы квантовой механики (1185096), страница 24
Текст из файла (страница 24)
О возникновении суперпозиции состояний и о смысле амплитуд состояний. Предположим, что микрообъект находится ~в некотором состоянии <а(. Согласно принципу супсрпозиции, состояние <а[ может быть разложено по любой системе базисных состояний, например по системе (<[1з[): " Проблема измерения в квантовой механике рассматривается, н частности, в [2, 2З, 321. 116 Входящие в суперпозицию (11.1) числа <а~(1;> суть амплитуды состояний <р;1, или, точнее говоря, амплитуды вероятностей, с какими в состоянии <а~ «представлены» различные базисные состояния <р;~. Все это уже известно читателю, прочитавшему предыдущий параграф данной книги. Теперь уместно внести некоторые уточнения. Прежде всего отметим, что та или иная конкретная суперпозиция состояний микрообъекта возникает в результате его взаимодействия с окружающей обстановкой.
В роли последней может ~выступать некоторое макроскопическое тело (как,искусственного происхождения, так и представляющее часть естественных внешних условий); это макротело принято называть анализатором. Выражение (11.1) следует понимать так: в результате взаимодействия с определенным анализатором (в данном случае можно говорить о р-анализаторе) микрообъект, находившийся в состоянии <а(, переходит .в суперпозиционное состояние ~ ( а) р, !<' р; !. Принимая во внимание квантовомехан~ическую специфику суперпозиционного состояния, можно сказать, что, ~взаимодействуя с р-анализатором, микрообъект в известном смысле «перехо~дит» сразу во все состояния <р,~.
При этом амплитуду <а) р,> следует рассматривать как амплитуду обусловленного указанным взаимодействием перехода <а)- — «<~;). Величина ! <а)();>)' есть вероятность обна~ружить микрообъект в конечном счете именно в состоянии <Н. Можно предвидеть появление у читателя по крайней мере трех вопросов. Вопрос первый: что ~все-таки означает в действительности фраза «микрообъект переходит сразу во все состояния <р;1»? Ответ на этот вопрос будет фактически дан ниже, в пункте «Потенциальные возможности и их реализация в процессе измерения».
Здесь же заметим, что хотя в результате взаимодействия с р-анал~изатором,мнкрообъект «переходнт сразу,во все состояния <();1», однако обнаружить (зафиксировать) его принципиально можно всякий раз лишь в каком-то одном р-состоянии. Так что, можно сказать, никакого скандала не происходит. Кстати говоря, с подобной ситуацией читатель уже встречался при рассмотрении опытов 1 я 2 из $ 7. Здесь уместно еще раз напомнить, что Ы7 квантовомеханической логике далеко не,всегда сопутствуют наглядные представления. Вопрос второй: если амплитуда состояния ость в действительности амплитуда перехода, то как быть с теми определениями амплитуд состояний, которые были даны в $ 1О? Отвечая на этот вопрос, напомним приводившееся в 5 10 определение: «<а)р> есть амплитуда вероятности того, что микрообъект, находящийся .в состоянии <и~, может быть обнаружен также в состоянии <р)».
В этом определении надо заменить слово «находящийся» более точным словом «находнвшийся», поскольку после взаимодействия с анализатором микрообьект более уже не находится в состоянии <а); мосле этого становится лишним слово «также». Теперь указанное определение выглядит так: «<а) р> есть амплитуда вероятности того, что микрообъект, находившийся в состоянии <а~, может быть обнаружен в состоянии <)!)». Обнаружение есть некий измерительный ~процесс и <а) !!> играет ~роль амплитуды перехода <а)- <р), происходящего в этом, процессе.
Отметим здесь, что одной из составных частей измерительного ~процесса как раз и является указанное выше ~взаимодействие микро- объекта с анализатором. Впрочем, более подробный разговор об измерительном процессе еще впереди. Вопрос третий: ранее было условлено (см. 5 8) читать амплитуды перехода справа налево; если <а)ф;> — тоже амплитуда перехода, то ее придется читать в обратном направлении (слева направо); нет ли здесь путаницы? Действительно, если строго следовать условию записывать предшествующие состояния справа от последующих, то равенство (1!.1) надо было бы записать так; ~(н; ' (р;!а~=!и>.
(11.1а) Однако такая запись, как правило,,не применяется. Поэтому мы ~решили пойти на некоторую непоследовательность и ~во избежание,в связи с этим ~возможной;путан~ицы сохранить в дальнейшем термин «ам~плитуда состояния» наряду с термином «амплитуда перехода». Пользуясь обоими терминами, читатель должен помнить, что с точки зрения физической сущности амплитуда состояния есть не что иное, как амплитуда перехода (с 118 математической точки зрения это было показано еще в предыдущем параграфе). Примеры анализаторов.
С анализатором читатель встречался фактически всякий раз, когда рассматривалась интерференция амплитуд переходов. Приведем некоторые прнморы. Первый пример (см. (9.3)): анализатор — экран с двумя щелями. Он создает суперпозицию: ( з ! = ( э ! А ) ( А ) + ( з ~ В ) ( В (. (11.2) Второй пример[ем. (9.35)1: анализатор — кристаллическая решетка, состоящая из одинаковых ядер, не имеющих спина. Она создает супврпозицию: (э)=~(з)! - !р г). ! Третий пример (см.
(9.39)]: анагп!затор — неоднородное магнитное поле Вь Оно создает суперпозицню: ( з ~= » ( з1! ) ( ! (. ! (11 А) 1!9 Можно сказать, что анализатор, создавая определенную суперпозицию состояний, фактически обеспечивает возникновение неразличимых альтернатив, причем число альтернатив равно числу базисных состояний в данной суперпозицпи. В первом из приведенных примеров это число равно всего двум (т.
е, числу щелей в экране), во вто!ром примере — числу ядер в кристаллическом образце, в третьем примере — числу опиновых состояний (т. е, числу 2з+ 1, если з — спин атома). Сущность измерительного процесса. Измерительный процесс в квантовой механике состоит из трех последовательных этапов: 1) подготовительного этапа, когда микрообъект «приготовляют» в некотором состоянии <а), которое далее рассматривается как начальное состоя!!ие; 2) рабочего этапа, на котором происходит взаимодействие «приготовленного» мнкрообъекта с определепным анализатором, переводящим микрообъект в еуперпозиционное состояние; 3) регистрирующего этапа, на котором происходит обнаружение микрообъекта в том или,ином из базисных состояний, образующих супер- позицию.
На этом этапе микрообъект взаимодействует с неким макротелом, способным изменить свое состояние (11.6) 120 под воздействием микрообъекта; такое макротело пазывают детектором. Если для простоты пе рассматривать подготовительный этап, то абстрактная «схема> измерительного процесса может быть записана условно в следующем виде; (з)-ч",(з|!ч1)(р, ! ' (р,.|, (11.5) Здесь стрелка 1 соответствует рабочему этапу, а стрелка 2 — регистрирующему этапу. Основными элементами измерительного прибора (измерительной установки) являются, таким образом, анализатор и детектор, Роль анализатора уже выяснена.
Остановимся теперь на роли детектора. Образно говоря, его роль сводится к тому, чтобы <подглядеть», как именно «ведет себя» микрообъект в той суперпозицни состояний, которую создал анализатор. Если, воспользоваться приводившимьися выше ~примерами анализаторов, то указанное «подглядывапие» предполагает получение ответа на ~вопросы: через какую именно щель прошел конкретный электрон? на каком именно ядре кристаллической решетки ~рассеялся данный нейтроп? в,каком именно спиновом состоянии оказался данный атом? Знакомый с результатами подобных «подглядываний» (в частности, с результатамьи опыта 2 из Э 7), читатель может предвидеть, что «вмешательство» детектора приводит к ~разрушению суперпозиции состояний. Детектор обнаруживает микрообъект всякий раз в каком-то одном из состояний, составлявших суперпозицию; это совершается ценой разрушения еуперпозииии. С точки зрения представлений, рассмотренных в ~ 8 и 9, зто означает, что детектор превращает неразличимые альтернативы в различимые н тем самым разрушает интерференцию амплитуд переходов.
Выделим из «схемы» (11.5) регистрирующий этап, отвечающий взаимодействию микрообъекта с детектором: Х(з!Р~)(Р~!-(Р1!. Часто говорят, что «схема» типа (1!.6) описывает «стягивание> суперпозиции )~( з ! (1, )( Щ к состоянию <р;!. Этот процесс известен также как «редукция волнового пакета». Итак, если анализатор создает определенную супер- позицию состояний, то детектор ее разрушает, «стягивая» к одному пз составлявших эту суперпозицню состояний.
Какую, информацию получает при этом наблюдательз Очевидно, что если «схема» (11.5) испытана на одном единственном микрообъекте, то о получении какой- либо полезной информации говорить трудно. Необходимо повторить измерительный процесс для достаточно большого числа микрообъектов. В этом случае наблюдатель может выяснить, во-первых, какие значения величин р-набора реализуются на практике, и, во-вторых, как часто,микрообъект обнаруживается в том ~или ином (1-состоянии. Это позволяет экспериментально определить, во-.первых, спектр значений величин р-набора и, во-вторых, вероятности ~ <з~ рг> ('. Некоторые особенности квантовомеханического измерительного процесса.
Прежде всего отметим, что процесс измерения радикально воздействует на микрообъект. Достаточно указать, что изменение начального состояния микрообъекта в процессе измерения есть принципиальное обстоятельство. Как известно, при выполнении измерений с макрообъектами можно в той или иной степени абстрагироваться от средств наблюдения.
В квантовой механике этого сделать принципиально нельзя, иначе говоря,,нельзя п~ренебречь взаимодействием микрообъекта с окружающей его обстановкой. «Схема», измерительного процесса, а конкретно та ее часть, которую описывает выражение (1!.б), демонстрирует наличие элемента случайности в поведении микрообъекта. Действительно, нельзя однозначно предсказать, в каком именно р-состоянии будет обнаружен в конечном счете тот или иной микрообъект. Специфической чертой квантовомеханического измерительного процесса является также невозможность наглядного представления ни первого этапа процесса (когда анализатор создает суперпозицию состояний), ни заключительного этапа (когда детектор упомянутую суперпозицию «стягнвает» к одному состоянию).