Е.В. Чижонков - Конспект лекций по методам решения симметричных линейных систем (1162400), страница 3
Текст из файла (страница 3)
ª ª®¬ ¯®à浪¥ ¡à âì j 1 = M +2 m + M 2 m os (22jN 1) ? DZà ªâ¨ç¥áª¨¥ ¢ëç¨á«¥¨ï ¯®ª § «¨, çâ® ¥ª®â®àëå è £ å ¨«¨ ¤ ¥ ¨å ¯®á«¥¤®¢ ⥫ì®áâïå ¢ëç¨á«¨â¥«ì ï ¯®£à¥è®áâì ¬®¥â á¨«ì® à á⨠¨ § íâ® ¢à¥¬ï ¯®«®áâìî ¨§¬¥¨âì ¢¨¤ á ¬®£® à¥è¥¨ï. DZ®í⮬ã¨á¯®«ì§ã¥âáï á¯¥æ¨ «ì ï ¯à®æ¥¤ãà 㯮à冷稢 ¨ï. DZਢ¥¤¥¬ ¯à¨¬¥à ¤«ï N = 2l : ä®à¬ã«¥ ¤«ï ª®à¥© ¨á¯®«ì§ã¥âáï ¯¥à¥áâ ®¢ª (¯®á«¥¤®¢ ⥫ì®áâì § 票© j ) ¬®¥á⢠f1; 2; : : : ; N g: ¥ ¬®® ¯®áâநâì ४ãàà¥âë¬ ®¡à §®¬:l = 1 ! f1; 2g; l = 2 ! f1; 4; 2; 3g; l = 3 ! f1; 8; 4; 5; 2; 7; 3; 6g:¤¥áì à §¤¢¨£ îâáï í«¥¬¥âë ¤«ï ¯à¥¤ë¤ã饣® § 票ï l ¨ ᢮¡®¤ë¥ ¬¥áâ § ¯¨áë¢ îâáï ¢¥«¨ç¨ë 2l + 1 "¯à¥¤ë¤ã騩 í«¥¬¥â". 4¥¡ë襢᪨© âà¥åá«®©ë© ¬¥â®¤ (¯®«ã¨â¥à 樮ë©)«ï à¥è¥¨ï á¨á⥬ë Ax = b , £¤¥ A = AT > 0; 2 [m; M ℄ á ¨â¥à¥áã¥â ¯®áâ஥¨¥ «£®à¨â¬ á ®æ¥ª®© ¯®£à¥è®á⨠¤«ï «î¡®£®¨â¥à 樨 k á«¥¤ãî饣® ¢¨¤ p ®¬¥à n21mkek k2 qk ke0 k2 , £¤¥ qk = 1 + 12n ; 1 = 1 + p ; = M .1«ï § ¤ ®£® ç «ì®£® ¯à¨¡«¨¥¨ï x0 ®¯à¥¤¥«¨¬ ¤ «ì¥©è¨¥ ¢ëç¨á«¥¨ï ¯®ä®à¬ã« ¬:x1= (I 1 A)x0 + 1 b ;k+1x= k+1 (I k+1A)xk + (1 k+1)xk1+k+1 k+1 b:(1)15â® | áâ ¤ àâ ï ä®à¬ § ¯¨á¨ âà¥åá«®©®£® «£®à¨â¬ , ¯à¨¢¥¤¥¬ ¥¥ íª¢¨¢ «¥âë© ¢¨¤ (¤¢ãåá«®©ë©, ® ¯®¤¯à ¢«¥ë©):x xk+ Axk = b ; xk+1 = k+1 x + (1 k+1 )xk 1 :k+1¢¥¤¥¬ ®¡®§ 票ï: ¤«ï ®è¨¡ª¨ ek = xk x ¨ ¤«ï ®¯¥à â®à Dk = I k A .
§ä®à¬ã« âà¥åá«®©®£® ¬¥â®¤ á«¥¤ã¥â:e1 = D1 e0 ; ek+1 = k+1 Dk+1 ek + (1 k+1 )ek 1 :âáî¤ ¬®® ¯®«ãç¨âì, çâ® ®è¨¡ª k ®© ¨â¥à 樨 ¯à¥¤áâ ¢«ï¥âáï ª ª १ã«ìâ â㬮¥¨ï ¬®£®ç«¥ k ®© á⥯¥¨ ®â ¬ âà¨æë A ç «ìãî ®è¨¡ªã. ¥©á⢨⥫ì®100e = (I 1 A)e = P1 (A)e ;e2 = 2 (I 2 A)e1 + (1 2 )e0 = P2 (A)e0 ;::: ::: ::: ::: ::: ::: :::ek = Pk (A)e0 : ª¨¬ ®¡à §®¬, ¬®® ®¯à¥¤¥«¨âì ¯®«¨®¬ ®è¨¡ª¨P0 (t) = 1 ; P1 (t) = 1 1 t ; Pk+1 (t) = k+1 (1 k+1 t)Pk (t) + (1 k+1 )Pk 1 (t) : (2)⬥⨬ ¥£® å à ªâ¥à®¥ ᢮©á⢮: ¤«ï «î¡®© á⥯¥¨ k á¯à ¢¥¤«¨¢® Pk (0) = 1:DZ®áâ஥®¥ ¯à¥¤áâ ¢«¥¨¥ ¤«ï ®è¨¡ª¨ ¬¥â®¤ ek = Pk (A)e0 ¯®§¢®«ï¥â ¯®«ãç¨âì®æ¥ªã ¢¨¤ kek k2 kPk (A)k2 ke0 k2 ; £¤¥ kPk (A)k2 = mmaxjP (t)j: ¥¯¥àì 襩 § ¤ tM k祩 ï¥âáï â ª®© ¯®¤¡®à k ; k , ç⮡ë Pk (t) ¡ë«® ¬®£®ç«¥®¬ ¥¡ë襢 ¯¥à¢®£®à®¤ ®â१ª¥ [m; M ℄ á ãá«®¢¨¥¬ Pk (0) = 1 , â.¥.Pk (t) = qk Tk1 0 t2M m; 0 =; 0 =:0m+MM +m(3) ¯®¬¨¬ ४ãàà¥â®¥ á®®â®è¥¨¥ ¤«ï ¬®£®ç«¥®¢ ¥¡ë襢 T0 (x) = 1 ; T1 (x) = x ; Tk+1 (x) = 2xTk (x) Tk 1 (x) :âáî¤ ¨ ¨§ £® ¢ëà ¥¨ï ¤«ï Pk (t) ¯®«ã稬Pk+1 (t)1 0 t Pk (t)=2qk+10qkPk 1 (t) P1 (t) 1 0 t;=; P0 (t) = 1 :qk 1q10⬥⨬ ç áâë© á«ãç © ¯®«ãç¥ëå à ¢¥á⢠(â.ª.
Pk (0) = 1 ¤«ï «î¡®£® k )âáî¤ ©¤¥¬12=qk+1 0 qk1; q1 = 0 ; q0 = 1:qk 1qk+1q= 2 k+1qk 10 qk1; k = 1; 2; : : :¬®¨¬ ®¡¥ ç á⨠(4) qk+1 , ¢ १ã«ìâ ⥠¯®«ã稬2qPk+1 (t) = k+1 (1 0 t)Pk (t) + 10 qk2qk+1Pk 1 (t); P1 (t) = 1 0 t; P0 (t) = 1 :0 qk(4)16DZ®«®¨¬ ⥯¥àì22q; k+1 = k+1 ;m+M0 qk®£¤ ä®à¬ã«ë (3) ¨ (2), § ¤ î騥 ¬®£®ç«¥ë Pk (t) ᮢ¯ ¤ãâ.k = 0 =«ï 㤮¡á⢠¢ëç¨á«¥¨© ¨á¯®«ì§ãîâ ¤àã£ãî (४ãàà¥âãî) ä®à¬ã«ã ¤«ï k :4k+1 =¯à¨ k 2; 2 = 2 .
¯®«ãç ¥âáï ¢ १ã«ìâ â¥ íª¢¨¢ «¥âëå ¯à¥®¡4 20 kà §®¢ ¨©:1 44 k+1=1k k+1 k1k+14=1k0 qk4=12qk+1k0 22 0qkqk1=20 qk= 20 :k qk 1à¥åá«®©ë© áâ æ¨® àë© ¬¥â®¤ 票¥ ¨â¥à 樮®£® ¯ à ¬¥âà k ¢ 祡ë襢᪮¬ âà¥åá«®©®¬ ¬¥â®¤¥ ¥ § ¢¨á¨â®â ®¬¥à ¨â¥à 樨 k , ¢ â® ¢à¥¬ï ª ª ¯ à ¬¥âà k ¨§¬¥ï¥âáï, ç¨ ï á 1 = 2 . ©¤¥¬ ¯à¥¤¥«ì®¥ § 票¥ ¤«ï k , ª®£¤ k áâ६¨âáï ª ¡¥áª®¥ç®áâ¨. áᬮâਬä®à¬ã«ãk+1 =2 (1 + 2k )2qk+1= 1 2(k1+1) :0 qk 0 1 + 1 ª ª ª 1 < 1 ¨ 0 = q1 = 21 =(1 + 21 ) , â® = klim = 1 + 21 ; ¨ ¯à¨ ¤®áâ â®ç®!1 k¡®«ìè¨å k ¨¬¥¥¬ k . DZ®í⮬㠥áâ¥á⢥® ¨§ãç¨âì áâ æ¨® àë© âà¥åá«®©ë©¬¥â®¤x1= (I A)x0 + b ;(5)k+1x= (I A)xk + (1 )xk 1 + b:á ¯®áâ®ï묨 ¨â¥à 樮묨 ¯ à ¬¥âà ¬¨p21mp=; = 1 + 21 ; 1 =; = :m+MM1+ ¤ ®¬ á«ãç ¥ ¯®«¨®¬ ®è¨¡ª¨ ¡ã¤¥â ®¯à¥¤¥«ïâìáï á®®â®è¥¨ï¬¨P0 (t) = 1 ; P1 (t) = 1 t ; Pk+1 (t) = (1 t)Pk (t) + (1 )Pk 1 (t) :(6)¥¯¥àì ®è¨¡ªã ¬¥â®¤ ek = xk x = Pk (A)e0 ¬®® ®æ¥¨âì ª ª kek k2 kPk (A)k2 ke0 k2 ;§ ï ¢¥«¨ç¨ã kPk (A)k2 = mmaxjP (t)j: ¤®¡® ®â [m; M ℄ ¯¥à¥©â¨ ª áâ ¤ à⮬ãtM k®â१ªã [ 1; 1℄; ¨á¯®«ì§ãï § ¬¥ã1 0 x1 ; 0 =:1+®£¤ Pk (t) = Qk (x) ¨ mmaxjP (t)j = maxjQk (x)j: DZ®«¨®¬ë Qk (x) ®¯à¥¤¥«ïîâáï1x1tM kt=ª ªQ0 (x) = 1 ; Q1 (x) = 0 x ; Qk+1(x) = 20 xQk (x) 21 Qk 1(x) :(7)âáî¤ ¯à¨ ¯®¬®é¨ § ¬¥ë Qk (x) = k1 Rk (x) ¯®«ã稬 áâ ¤ à⮥ ४ãàà¥â®¥ á®®â-®è¥¨¥R0 (x) = 1 ; R1 (x) = 0 x=1 ; Rk+1 (x) = 2xRk (x) Rk 1 (x) :(8)17⮬ã á®®â®è¥¨î 㤮¢«¥â¢®àïîâ ¬®£®ç«¥ë ¥¡ë襢 ¯¥à¢®£® த Tk (x) = os(k aros x)á ç «ì묨 ãá«®¢¨ï¬¨ T1 (x) = x; T0 (x) = 1 ¨ ¬®£®ç«¥ë ¥¡ë襢 ¢â®à®£® த sin((k + 1) aros x)p 2Uk (x) =á ç «ì묨 ãá«®¢¨ï¬¨ U1 (x) = 2x; U0 (x) = 1 .
¥â®¤®¬1 x¥®¯à¥¤¥«¥ëå ª®íä䍿¨¥â®¢ ¥á«®® ©â¨ ¢ëà ¥¨¥ ¤«ï Rk (x) ¢ ¢¨¤¥ «¨¥©®©ª®¬¡¨ 樨 Tk (x) ¨ Uk (x) :Rk (x) =1 21221Tk (x) +U (x) ; k 0:21 + 11 + 21 k «¥¥, ¨á¯®«ì§ãï ¨§¢¥áâë¥ á¢®©á⢠¬®£®ç«¥®¢ ¥¡ë襢 ¯®«ã稬max jTk (x)j = Tk (1) = 1;1x1max jUk (x)j = Uk (1) = k + 1;1x11 21max jRk (x)j = Rk (1) = 1 + k:1x11 + 21âáî¤ á«¥¤ã¥â ¨áª®¬ ï ®æ¥ª ¯®£à¥è®áâ¨2kek k2 q1k 1 + k 11 + 21 ke0 k2 :1§ ¥¥, ¢ ç áâ®áâ¨, á«¥¤ã¥â, çâ® áâ æ¨® àë© âà¥åá«®©ë© ¬¥â®¤ á室¨âáï ¡ëáâ॥®¯â¨¬ «ì®£® ®¤®è £®¢®£® ¬¥â®¤ , ® ¬¥¤«¥¥¥ 祡ë襢᪮£® ¤¢ãåá«®©®£® ¬¥â®¤ ¨¯®«ã¨â¥à 樮®£® ¬¥â®¤ ¥¡ë襢 . 5¥â®¤ ᮯàï¥ëå £à ¤¨¥â®¢DZãáâì âॡã¥âáï ©â¨ à¥è¥¨¥ á¨á⥬ë Ax = b á ᨬ¬¥âà¨ç®© ¯®«®¨â¥«ì® ®¯à¥¤¥«¥®© ¬ âà¨æ¥© A = AT > 0 .
DZ® § ¤ ®¬ã ç «ì®¬ã ¯à¨¡«¨¥¨î x0 ¢ëç¨á«¨¬¥¢ï§ªã r0 = Ax0 b . ª ¤®© ¨â¥à 樨 ¡ã¤¥¬ ®¯à¥¤¥«ïâì xn ª ªxn= x0 +nX1i=0i Ai r0á ¥¨§¢¥áâ묨 ¯®ª ª®íä䍿¨¥â ¬¨ i . áᬮâਬ á«¥¤ãî騩 äãªæ¨® « F (x) = (Ax; x) 2(b; x) . «ï ⮣®, çâ®¡ë ®¤®á⨣ « ᢮¥£® ¬¨¨¬ã¬ ¢ â®çª¥ xn ¥®¡å®¤¨¬®:dxnF (xn )= 2 Axn b;= rn ; Aj r0 :0=idi§ ä®à¬ã«ë ¤«ï xn á«¥¤ã¥âAxnb = r0 +nX1i=0i Ai+1 r0 :(9)18¬® ï ᪠«ïà® Aj r0 ¨ ãç¨âë¢ ï, çâ® (rn ; Aj r0 ) = 0 , ¯®«ã稬 á¨á⥬㠫¨¥©ëåãà ¢¥¨© ®â®á¨â¥«ì® i :(r0 ; Aj r0 ) +nX1i=0i (Ai+1 r0 ; Aj r0 ) = 0j = 0; : : : ; n 1: ¬¥â¨¬, çâ® ª®íä䍿¨¥âë i § ¢¨áï⠮⠮¬¥à ¨â¥à 樨 n . ¯à ¢¥¤«¨¢ ¥¬¬ : ¥®¡å®¤¨¬ë¬¨ ¨ ¤®áâ â®ç묨 ãá«®¢¨ï¬¨ ⮣®, çâ® xn { â®çª ¬¨¨¬ã¬ äãªæ¨® « F (x) , ïîâáï à ¢¥á⢠:(rn; rj ) = 0j = 0; : : : ; n 1:(10)®ª § ⥫ìá⢮: ¥®¡å®¤¨¬®áâì.
§ ⮣®, çâ® xn ¥áâì â®çª ¬¨¨¬ã¬ F (x) (9) ¨¬¥¥¬: (rn ; Aj r0 ) = 0; j = 0; : : : ; n 1: 䨪á¨à㥬 j ¨ § ¯¨è¥¬rj= r0 +j 1X (j ) Ai+1 r0 :i=0i ᬮâਬ ¢ëà ¥¨¥(rn ; rj ) = (rn ; r0 ) +j 1X(j )i=0i (Ai+1 r0 ; rn ): 票ï i + 1 ¥ ¯à¥¢ëè îâ ¢¥«¨ç¨ë n 1 , ¯à¨ í⮬ i + 1 ¬ ªá¨¬ «ì® ¯à¨ j 1 ,â.¥. j n 1 , ¯®í⮬㠪 ¤®¥ ᪠«ï஥ ¯à®¨§¢¥¤¥¨¥ ¯®¤ § ª®¬ á㬬ë à ¢® ã«î.¥®¡å®¤¨¬®áâì ¤®ª § .®áâ â®ç®áâì (¯® ¨¤ãªæ¨¨). «ï j = 0 ¢ëà ¥¨ï (9) ¨ (10) ®ç¥¢¨¤® ᮢ¯ ¤ îâ:(rn ; r0 ) = 0 . DZãáâì ¤«ï ¢á¥å j ¢¥àë à ¢¥á⢠(10) ¨ (9) ¢ë¯®«¥ë ¤«ï ¥ª®â®à®£®j k : (rn ; Aj r0 ) = 0 . DZ஢¥à¨¬ á¯à ¢¥¤«¨¢®áâì ¤«ï k + 1 , â.¥. (rn ; Ak+1 r0 ) = 0 :0 = (rn ; rk+1 ) = (rn ; Qk+1 (A)r0 ) = ak+1(Ak+1 r0 ; rn ) + ak (Ak r0 ; rn ) + : : : + (r0 ; rn ):¤¥áì Qk (t) = ak tk + + 1 ¨ ak 6= 0 .
¥¢ ï ç áâì à ¢¥áâ¢ à ¢ ã«î ¨ ª ¤®¥ ¨§á« £ ¥¬ëå ¢ ¯à ¢®©, ªà®¬¥ ¯¥à¢®£®, â ª¥ à ¢ë ã«î ¯® ¯à¥¤¯®«®¥¨î ¨¤ãªæ¨¨.âáî¤ á«¥¤ã¥â, çâ® ak+1 (Ak+1 r0 ; rn ) = 0; â.¥. (Ak+1 r0 ; rn ) = 0 . ¥¬¬ ¤®ª § .뢮¤ âà¥åá«®©®© ä®à¬ë ¤«ï «£®à¨â¬ ®á®¢ ¨¨ ¤®ª § ®© «¥¬¬ë ¬¥â®¤ã ᮯàï¥ëå £à ¤¨¥â®¢ ¬®® ¯à¨¤ âìáâ ¤ àâãî âà¥åá«®©ãî ä®à¬ãx1= (I 1 A)x0 + 1 b ;k+1x= k+1 (I k+1A)xk + (1 k+1)xk1+k+1 k+1 b:⬥⨬, çâ® ¯¥à¢ë© è £ ¬®® áç¨â âì ç áâë¬ á«ãç ¥¬ âà¥åá«®©®© ä®à¬ë á 1 =1 , ¨ ¢ ᨫ㠥£® ¤¢ãåá«®©®á⨠¯ à ¬¥âà 1 ®¯à¥¤¥«ï¥âáï ª ª ¢ ¬¥â®¤¥ ¨áª®à¥©è¥£®£à ¤¨¥â®£® á¯ã᪠: 1 = (r0 ; r0 )=(Ar0 ; r0 ):§ ä®à¬ã« ¤«ï ®¯à¥¤¥«¥¨ï xk ¯®«ã稬 á®®â®è¥¨ï ¤«ï ¥¢ï§ª¨ rk = Axk b :rk+1 = k+1 rk k+1 k+1 Ark + (1 k+1 )rk 1 :(11)19DZ®áâ஥¨¥ ¯®á«¥¤®¢ ⥫ì®á⨠¯ à ¬¥â஢ ¡ã¤¥¬ ®áãé¥á⢫ïâì ¯®á⥯¥®.
DZãáâì1 ; 1 ; : : : ; k ; k ®¯à¥¤¥«¥ë, ⮣¤ ¤«ï ¯à¨¡«¨¥¨© x1 ; : : : ; xk ¨¬¥¥âáï ¬®£® á®®â®-襨© ®à⮣® «ì®áâ¨:(rj ; ri ) = 0i = 1; : : : ; k(12)¤®áâ ¢«ï¥â ¬¨¨¬ã¬ äãª-j = 0; : : : ; i 1:DZ®«ã稬 ä®à¬ã«ë ¤«ï k+1; k+1 ¨§ ãá«®¢¨©, çâ® xk+1樮 «ã F (x) (k + 1) © ¨â¥à 樨:(13)DZ®ª ¥¬ á ç « , çâ® ¨§ (12) à ¢¥á⢠᫥¤ãîâ (13) ¤«ï j k 2 ¢â®¬ â¨ç¥áª¨, § ⥬ ¨á¯®«ì§ã¥¬ ®á⠢訥áï ¤¢ ( j = k 1 ¨ j = k ), çâ®¡ë ®¯à¥¤¥«¨âì ¨áª®¬ë¥k+1 ; k+1 .DZãáâì j k 2 , ¨§ (11) ¨ (12) ©¤¥¬:(rj ; rk+1) = 0j = 0; : : : ; k:(rk+1; rj ) = k+1 (rk ; rj ) k+1 k+1 (Ark ; rj ) + (1 k+1 )(rk 1 ; rj ):DZ®ª ¥¬, çâ® (Ark ; rj ) = 0 ¤«ï j k 2: ¥©á⢨⥫ì®, ¨§ (11) ¯à¨ k = j ¯®«ã稬Arj =1j +11 h j +1r(1 j +1 )rjj +1j +1rj1i:(14)¬® ï ᪠«ïà® rk ¨ ãç¨âë¢ ï (12), ¯®«ã稬 ¤«ï j k 2 :(Arj ; rk ) =1j +1i1 h j +1 kj1k(r ; r ) (1 j +1 )(r ; r ) = 0:j +1j +1(rj +1 ; rk )«¥¤®¢ ⥫ì®, (rk+1 ; rj ) = 0 ¤«ï j k 2 .¯à¥¤¥«¨¬ ⥯¥àì k+1 ¨ k+1 .