Е.В. Чижонков - Конспект лекций по методам решения симметричных линейных систем (1162400), страница 10
Текст из файла (страница 10)
= minmax1t2¥¬ 3楪¨ ¯®£à¥è®á⨬¥â®¤®¢ MJOR ¨ MSOR« ¢ ¯®á¢ïé¥ ¯®«ãç¥¨î ®æ¥®ª ¯®£à¥è®á⨠¬®¤¨ä¨æ¨à®¢ ëå ¬¥â®¤®¢ ª®¡¨¨ SOR (¬¥â®¤®¢ MJOR ¨ MSOR) ¯à¨ ¨«ãç襬 ¢ë¡®à¥ ¨â¥à 樮ëå ¯ à ¬¥â஢. áᬠâਢ îâáï â ª¥ ¢®§¬®®á⨠¨á¯®«ì§®¢ ¨ï ¯¥à¥¬¥ëå ¯ à ¬¥â஢ ¨ ¨å ¢ë¡®à¨§ ¢ ਠ樮ëå ¯à¨æ¨¯®¢.¡®§ 稬 ¯®£à¥è®áâì à¥è¥¨ï k -© ¨â¥à 樨 ç¥à¥§ yk== fvk ; rk g = fuk u; pk pg , £¤¥ fu; pg | â®ç®¥ à¥è¥¨¥ § ¤ ç¨ L0 z = F , ¢¢¥¤¥¬®¯¥à â®àë Du = DuT > 0 ¨ Dp = DpT > 0; â ª¨¥ çâ®Du A 1 B0 = (Du A 1 B0 )T ; Dp C 1 S0 = (Dp C 1S0 )T ;¨ ®¯à¥¤¥«¨¬ ®à¬ã ¯®£à¥è®á⨠¢ ¯à®áâà á⢥ Z ª ªkyk2D = (Duv; v) + (Dpr; r); y = fv; rg 2 Z : ¯®¬¨¬, çâ® ¢á¥£¤ áãé¥áâ¢ã¥â ä®à¬ «ì ï ®æ¥ª kyk k kT k kky0 kk ;¨ ¨§¢¥áâ®, çâ® ¤«ï «î¡®£® " > 0 áãé¥áâ¢ã¥â ¯® ªà ©¥© ¬¥à¥ ®¤ ¬ âà¨ç ï ®à¬ â ª ï, çâ®q kT k q + " ;£¤¥ q | ¢¥«¨ç¨ ᯥªâà «ì®£® à ¤¨ãá ®¯¥à â®à ¯¥à¥å®¤ T .
¤ ª® ¥á«¨ ¬ âà¨æ T ¥¤¨ £® «¨§ã¥¬ , â® ¯®áâ஥¨¥ â ª¨å ®à¬ ¯à ªâ¨ç¥áª¨ âà㤮®áãé¥á⢨¬®.DZ®í⮬㠯।áâ ¢«ï¥â ¨â¥à¥á ¯®«ã票¥ ®æ¥®ª ¢ ¥áâ¥á⢥ëå ®à¬ å, ¯à¨¬¥à ¯à¨Du = A; Dp = C , å®âï ®æ¥ª kT k k ¢ ᮮ⢥âáâ¢ãî饩 ¯®¤ç¨¥®© ®à¬¥ ¬®¥â ãåã¤è¨âìáï.3.1. DZ®£à¥è®áâì ¬¥â®¤ MJOR¢ á«ãç ¥ ¯®áâ®ïëå ¯ à ¬¥â஢DZ८¡à §®¢ ¨¥ ä®à¬ã« ç « ¨§ ä®à¬ã« (2.2) ¯®«ã稬 à §¤¥«ìë¥ âà¥åá«®©ë¥ á®®â®è¥¨ï ¤«ï ª®¬¯®¥â¯®£à¥è®á⨠vk ; rk . ¬¥¥â ¬¥áâ®56¥¬ 3 楪¨ ¯®£à¥è®áâ¨1¥¬¬ 3.1.1.®¬¯®¥âëvk+1 ; rk+1¯®£à¥è®áâ¨ã¤®¢«¥â¢®àïîâ á®®â®è¥¨ï¬vk+1 = (2 )vkrk+1 = (2 )rk(1¯à¨k )I + 2 =A 1 B0 vk 1 ;(1 )I + 2 =C 1 S0 rk 1 :. ¯¨è¥¬ á®®â®è¥¨ï ¨â¥à 樮®£® ¬¥â®¤ (2.2) ¤«ï ¯®£à¥è®á-®ª § ⥫ìá⢮⨠yk = fvk ; rk g :8><>:®âªã¤ ¨¬¥¥¬vk+1 vk+ A vk + B rk = 0 ;rk+1 rkC+ B T vk= 0;Avk+1 = (1 )vk(3.1)A 1 Brk ;(3.2)rk+1 = rk + =C 1 B T vk :¢¥«¨ç¨¬ ¢ (3.2) ¨¤¥ªá k ¥¤¨¨æã ¨ § ¬¥¨¬ ¢ ¯®«ã祮¬ ¢ëà ¥¨¨ vk+1 ¯®¬®éìî á®®â®è¥¨ï (3.1).
१ã«ìâ ⥠¡ã¤¥¬ ¨¬¥âìrk+2 = rk+1 2 =C 1 S0 rk + =(1 )C 1 B T vk :(3.3)¥¯¥àì ¢ëà §¨¬ ¨§ (3.2) ¢¥«¨ç¨ã=C 1 B T vk = rk+1 rk¨ ¯®¤áâ ¢¨¬ ¥¥ ¢ (3.3)rk+2 = (2 )rk+1(1 )I + 2 =C 1 S0 rk :᪮¬®¥ á®®â®è¥¨¥ ¤«ï ¢â®à®© ª®¬¯®¥âë ¯®£à¥è®á⨠¯®«ã祮. «®£¨çë¬ ®¡à §®¬ ¯®«ãç ¥âáï âà¥åá«®©®¥ á®®â®è¥¨¥ ¨ ¤«ï ¯¥à¢®©. ¢¥«¨ç¨¬ ¢ (3.1) ¨¤¥ªá k ¥¤¨¨æã ¨ § ¬¥¨¬ ¢ ¯®«ã祮¬ ¢ëà ¥¨¨ rk+1 ¯®¬®éìî á®®â®è¥¨ï (3.2). १ã«ìâ ⥠¡ã¤¥¬ ¨¬¥âìvk+2 = (1 )vk+1 2 =A 1 B0 vkA 1 Brk :¥¯¥àì ¢ëà §¨¬ ¨§ (3.1) ¢¥«¨ç¨ãA 1 Brk = vk+1(1 )vk¨ ¯®¤áâ ¢¨¬ ¥¥ ¢ (3.4)vk+2 = (2 )vk+1(1 )I + 2 =A 1 B0 vk :(3.4)¥¬ 3 楪¨ ¯®£à¥è®áâ¨57 ç «ì®¥ ¯à¨¡«¨¥¨¥ë¡¥à¥¬ ç «ì®¥ ¯à¨¡«¨¥¨¥ fu0 ; p0 g ¨§ ãá«®¢¨ï (1.9)A u0 + B p0 = f :«ï â ª®£® ç «ì®£® ¯à¨¡«¨¥¨ï ¨¬¥¥¬(3.5)v1 = v0 ;r1 = I 1 0C S0 r ;(3.6)¨, ªà®¬¥ ⮣®, ¢ ᨫ㠫¥¬¬ë 1.3.2 ¯¥à¢ ï ª®¬¯®¥â vk ¯®£à¥è®á⨠yk ¨â¥à 樮®£® ¬¥â®¤ (2.2) ¤«ï «î¡®© ¨â¥à 樨 k ï¥âáï í«¥¬¥â®¬ ¯®¤¯à®áâà á⢠G (â.¥.(Avk ; h) = 0 ¤«ï 8h 2 H ).
DZ®í⮬ã á¯à ¢¥¤«¨¢® ¯®ª®¬¯®¥â®¥ à §«®¥¨¥ ¯®£à¥è®á⨠᫥¤ãî饣® ¢¨¤ :vk =NpX(k)NpX(k)i=1i=1i gi ; rk =di pi :楪 ¯®£à¥è®áâ¨ á ¯®áâ®ï묨 ¯ à ¬¥âà ¬¨«ï ¨á¯®«ì§ã¥¬®£® ç «ì®£® ¯à¨¡«¨¥¨ï ¢ ¯ãªâ¥ 2.2.5 ¡ë« à¥è¥ § ¤ ç ᨬ¯â®â¨ç¥áª®© ®¯â¨¬¨§ 樨 ¬¥â®¤ ¢ ¯®¤¯à®áâà á⢥ á ¢¥«¨ç¨®© ᯥªâà «ì®£® à ¤¨ãá q0 . DZ®«ã稬 ®æ¥ªã ¯®£à¥è®áâ¨, ᮮ⢥âáâ¢ãîéãî í⮬㠧 票î.
¯à ¢¥¤«¨¢ ¥®à¥¬ 3.1.1. â¥à æ¨®ë© ¬¥â®¤ (2.2) á ᨬ¯â®â¨ç¥áª¨ ®¯â¨¬ «ì묨¯ rà ¬¥âà ¬¨0 ; 0¨ ᯥªâà «ìë¬ à ¤¨ãᮬ ®¯¥à â®à ¯¥à¥å®¤ q0 =1 ; = ,1+áâ àâãî騩 á ç «ì®£® ¯à¨¡«¨¥¨ï ¢¨¤ (1.9), á室¨âáï á ®æ¥ª®© ¯®£à¥è®á⨯ਠç¥âëåkkyk kD q0k ky0 kD :. DZãáâì 0 ; 0 | ᨬ¯â®â¨ç¥áª¨ ®¯â¨¬ «ìë¥ ¨â¥à æ¨®ë¥ ¯ à ¬¥âàë, q0 | ᮮ⢥âáâ¢ãî騩 ¨¬ ᯥªâà «ìë© à ¤¨ãá ®¯¥à â®à ¯¥à¥å®¤ ¨§ ⥮६ë 2.1.4. ¯®¬¨¬, çâ®®ª § ⥫ìá⢮0 = 2; 0 = 2 ( + ): ᫨ ¢¢¥á⨠®¡®§ 票¥~ =2;+â® ¯®«ãç¥ë¥ âà¥åá«®©ë¥ á®®â®è¥¨ï ¤«ï ¯®£à¥è®á⨠¬¥â®¤ (2.2) ¬®® ¯¥à¥¯¨á âì ¢ ¡®«¥¥ 㤮¡®¬ ¢¨¤¥:vk+1 = (I ~A 1 B0 )vk 1 ;(3.7)rk+1 = (I ~C 1S0 )rk 1 :(3.8) ¯®¬®éìî íâ¨å ¢ëà ¥¨© ¬®® ®æ¥¨âì ª®¬¯®¥âë ¯®£à¥è®á⨠vk ¨ rk ¯®à®§ì.DZ®áª®«ìªã ¨§ ⥮६ë 1.3.1 á«¥¤ã¥â, ç⮠ᯥªâà «ìë© ¯ à ¬¥âà t 2 [; ℄ (®¡« áâì58¥¬ 3 楪¨ ¯®£à¥è®á⨨§¬¥¥¨ï ᮡá⢥ëå § 票© ¬ âà¨æ A 1=2 B0 A 1=2 ¨ C 1=2 S0 C 1=2 ) ¢ á®®â®è¥¨ïå (3.7), (3.8) ®¤¨ ¨ â®â ¥, â® ¢ ᨫ㠮¯à¥¤¥«¥¨ï ¢¥«¨ç¨ë ~ ¨¬¥¥¬kyk+2kD q02kyk kD ;®âªã¤ ¨ á«¥¤ã¥â ¨áª®¬ ï ®æ¥ª .
DZਠ¥ç¥âëå k ®æ¥ª ¥¬®£® ãåã¤è ¥âáï § áç¥â ¢ëà ¥¨ï (3.5) | ¯®ª § ⥫ìá⥯¥¨ 㬥ìè ¥âáï ¥¤¨¨æã.3.2. DZ®£à¥è®áâì ¬¥â®¤ MJOR¢ á«ãç ¥ ¯¥à¥¬¥ëå ¯ à ¬¥â஢ áᬮâਬ «£®à¨â¬ ¨§ ¯à¥¤ë¤ã饣® à §¤¥« á ¯¥à¥¬¥ë¬¨ ¨â¥à 樮묨 ¯ à ¬¥âà ¬¨8>><>>:uk+1 uk+ A uk + B pk = f ;k+1pk+1 pkk+1 C+ B T uk= g:k+1A(3.9)¤¥áì k+1 ; k+1 | ¢¥é¥áâ¢¥ë¥ ¯®«®¨â¥«ìë¥ ¨â¥à æ¨®ë¥ ¯ à ¬¥âàë. ¡®§ 稬ç¥à¥§ S () ãç áâ¢ãî騩 ¢ ¨â¥à 樮®¬ ¬¥â®¤¥ (3.9) ®¯¥à â®à!IA 1BS () =:1 1 TC B0®£¤ ®¯¥à â®à ¯¥à¥å®¤ T ¢ «£®à¨â¬¥ (3.9) k -¬ è £¥ ¡ã¤¥â ¨¬¥âì ¢¨¤(3.10)(3.11)¨ ¤«ï ¯®£à¥è®á⨠¬¥â®¤ yk ¡ã¤¥â á¯à ¢¥¤«¨¢® á®®â®è¥¨¥ yk+1 = T (k+1 )yk .
DZ®á«¥N ¨â¥à 権 ¯® ä®à¬ã«¥ (3.9) ¯®«ã稬 ¤«ï ®è¨¡ª¨ yN ¢ëà ¥¨¥yN = (I N S (N )) : : : (I k S (k )) : : : (I 1 S (1 )) y0 :(3.12) í⮩ ä®à¬ã«¥ ®¯¥à â®à 㬥ìè¥¨ï ®è¨¡ª¨ § N è £®¢ ¯à¥¤áâ ¢«ï¥â ᮡ®© ®¡®¡é¥ë© ¬®£®ç«¥ ®â ¬ âà¨æë S; ¢ ª®â®à®¬ ¬®¨â¥«¨ ¥ ª®¬¬ãâ¨àãîâ ¯à¨ à §«¨çëåk . áᬮâਬ ᯥªâà «ìãî § ¤ çãS () z = z ; z 2 Z :(3.13)¬¥¥â ¬¥áâ®T (k ) = I¥®à¥¬ 3.2.1. ®¡áâ¢¥ë¥ § ç¥¨ï¢ ¢¨¤¥£¤¥k S (k )1 ; : : : ; Nu+Np¢ § ¤ ç¥ (3.13) ¯à¥¤áâ ¢¨¬ë(1)i = 1; : : : ; Nu Np ;i =1q1(2;3)j = 1 1 4tj = ;j = 1; : : : ; Np ;2t1 ; : : : tNp | ᮡáâ¢¥ë¥ § ç¥¨ï § ¤ ç¨ S0 p = t C p .(3.14)(3.15)¥¬ 3 楪¨ ¯®£à¥è®áâ¨59®ª § ⥫ìá⢮. «ï ¢ë¢®¤ ä®à¬ã« ᮡá⢥ëå § 票© ¨á¯®«ì§ã¥¬ ¡ §¨á ¯à®áâà á⢠Z; ¯®áâà®¥ë© ¢ ⥮६¥ 1.3.2.
ç «¥ ¤«ï ¢¥ªâ®à®¢ ¢¨¤ zi(1) = fhi ; 0g;i = 1; : : : ; Nu Np ;¥¯®á।á⢥®© ¯®¤áâ ®¢ª®© ã¡¥¤¨¬áï, çâ® ª ¤ë© ¨§ ¨å 㤮¢«¥â¢®àï¥â á®®â®è¥¨ï¬ (3.13) á (1)i = 1 . á⠢訥áï ᮡáâ¢¥ë¥ ¢¥ªâ®àë ¡ã¤¥¬ ¨áª âì ¢ ¢¨¤¥zj = fgj ; 1 C 1B T gj g :DZਬ¥¨¬ ª ¯¥à¢®¬ã ãà ¢¥¨î ¢ (3.13) ¬ âà¨æã C 1 B T , ¯®á«¥ § ¬¥ë C 1 B T gj = pj¯®«ã稬(pj 1 C 1 S0 pj = pj ;1p = 1 pj : j ¤®© ᮡá⢥®© äãªæ¨¨ pj § ¤ ç¨ S0 p = t C p ᮮ⢥âáâ¢ã¥â ᮡá⢥®¥ § 票¥ tj ; j = 1; : : : ; Np .
䨪á¨à®¢ ¢ ¥£®, ¨§ ¯®«ã祮© á¨áâ¥¬ë ¤«ï ¨ ¨¬¥¥¬á®®â®è¥¨ït; Æ = :Æ=1᪫î稢 ¨§ íâ¨å ãà ¢¥¨© ; ¯à¨å®¤¨¬ ª ¢ëà ¥¨î;3)(2jq1=1 1 4tj =2¨ ᮮ⢥âá⢥®(2j ;3) = (2j ;3) :(3.16) ¢¥à襨¥ ¤®ª § ⥫ìá⢠«®£¨ç® ⥮६¥ 2.1.1. ¤¨á⢥®¥ ®â«¨ç¨¥ | íâ®(3)(3)¢¨¤ ª®à¥¢®£® ¢¥ªâ®à zj(3) ¢ á«ãç ¥ (2)j = j = j : zj = fgj ; pj =2tj g : § ¯®«ã祮£® १ã«ìâ â á«¥¤ã¥â, çâ® (S ()) | ᯥªâà ®¯¥à â®à S () | ¢ ¬¥â®¤¥ (3.9) ¬®¥â ¡ëâì ¯ à ¬¥âਧ®¢ á ¯®¬®éìî ᯥªâà ®¯¥à â®à C 1=2 S0 C 1=2 á«¥¤ãî騬 ®¡à §®¬.
DZãáâì (C 1=2 S0 C 1=2 ) 2 [; ℄ , ⮣¤ (S ()) ¯à¨ ¤«¥¨â ¬®¥áâ¢ã = f1g[ 12p1 1 4t= ; t 2 [; ℄ :¡à ⨬ ¢¨¬ ¨¥ ä®à¬ã«ë (3.16). ¨ ¯®ª §ë¢ îâ, ç⮠ᮡáâ¢¥ë¥ ¢¥ªâ®àëzj(2;3) § ¢¨áïâ ®â . DZ®í⮬㠯ਠ¯¥à¥¬¥ëå k ¨§¢¥áâë¥ áâ ¤ àâë¥ ¬¥â®¤ë ®¯â¨-¬¨§ 樨 ¨â¥à 権, ®á®¢ ë¥ ¬¨¨¬¨§ 樨 ᯥªâà «ì®£® à ¤¨ãá ®¯¥à â®à ¯¥à¥å®¤ ¢ (3.9), §¤¥áì ¥¯à¨¬¥¨¬ë. ¤ ¢ á¯¥æ¨ «ìë¬ ®¡à §®¬ ç «ì®¥ ¯à¨¡«¨¥¨¥, ¡ã¤¥¬ ¯à®¢®¤¨âì ¨â¥à 樮멬¥â®¤, ¤«ï ª®â®à®£® ¢¥ªâ®à ®è¨¡ª¨ yk ¤«ï ¯à®¨§¢®«ì®£® k ¡ã¤¥â ¯à¨ ¤«¥ âì ¯®¤¯à®áâà áâ¢ã à §¬¥à®á⨠2 Np ¨ ª®â®àë© ¬®¥â ¡ëâì ¯à¥¤áâ ¢«¥ ¢ ¢¨¤¥ à §«®¥¨ï¯® «¨¥©® ¥§ ¢¨á¨¬®© á¨á⥬¥ ¢¥ªâ®à®¢, ¥ § ¢¨áï饩 ®â k . ©¤¥¬ ᮮ⢥âáâ¢ãî騥 á¨áâ¥¬ë ¤¢ã¬¥àëå á®®â®è¥¨©.
롥६ ç «ì®¥ ¯à¨¡«¨¥¨¥ fu0 ; p0 g ¨§ ãá«®¢¨ï (1.9)A u0 + B p0 = f :60¥¬ 3 楪¨ ¯®£à¥è®á⨧ «¥¬¬ë 1.3.2 ¨ ⥮६ë 1.3.2 ¢ë⥪ ¥â ¯®ª®¬¯®¥â®¥ à §«®¥¨¥ ¯®£à¥è®á⨠yk =fvk ; rk g á«¥¤ãî饣® ¢¨¤ :vk=NpX(k)i=1i gi ;rk=NpX(k)i=1(3.17)di pi :DZ®¤áâ ¢«ïï (3.17) ¢ (3.11), ¯®«ã稬 ¤«ï ª ¤®£® i(3.18)yik+1 = (I2 k+1Ti (k+1 )) yik :¤¥áì ¨á¯®«ì§®¢ ë ®¡®§ 票ïyik = ((ik) ; d(ik) ) ; Ti () = 1 1 t0i ; I2 ¨¬¥¥â á¬ëá« ¥¤¨¨ç®© ¬ âà¨æë ¢â®à®£® ¯®à浪 . «¥¤®¢ ⥫ì®, ä®à¬ã«ã (3.12)¬®® ¯¥à¥¯¨á âì ¢ ¡®«¥¥ ¤¥â «ì®© ä®à¬¥:yiN = (I2 N Ti (N )) : : : (I2 k Ti (k )) : : : (I2 1 Ti (1 )) yi0 :(3.19)®¡á⢥묨 § 票ﬨ ¬ âà¨æë Ti () ¡ã¤ãâ ¢¥«¨ç¨ë ¨§ (3.15), ᮡá⢥묨¢¥ªâ®à ¬¨ | ( (2i ;3) ; 1) .
DZà¨ à §«¨çëå k ¬®¨â¥«¨ ¢ (3.19) ¥ ª®¬¬ãâ¨àãîâ. ¯¨è¥¬ á®®â®è¥¨ï (3.18) ¢ ª®®à¤¨ ⮩ ä®à¬¥:ki +1 = (1 k+1)ki k+1ti dki ;dki +1 = k+1 ki + dki :k+1(3.20)âáî¤ ¬®® ¯®«ãç¨âì á®®â®è¥¨ï, á¢ï§ë¢ î騥 à §«¨çëå á«®ïå «¨¡® ⮫쪮¢¥«¨ç¨ë ki , «¨¡® ⮫쪮 dki . DZਢ¥¤¥¬ ¢ëª« ¤ª¨ ¤«ï ¯¥à¢®£® á«ãç ï. § ¢â®à®£®ãà ¢¥¨ï (3.20) ¯®«ãç ¥¬k+1 kk+1 i¨, ãç¨âë¢ ï ¯¥à¢ë¥ ãà ¢¥¨ï (3.20) ¤«ï ki +2 ¨ ki +1 ; ¨¬¥¥¬dki +1 dki =ki +2 ª¨¬ ®¡à §®¬,= ki +1k+2 k+1 k1ti i + k+2k+1k+11 (ki +1ki ) :(3.21)2m+1 = Q(2) (t ) ;2i m = Q(1)m (ti ) ; im+1 i(3)2m+12mdi = Qm (ti ) ; di= Q(4)m (ti ) ;£¤¥ ç¥à¥§ Q(mi) (t); i = 1; 2; 3; 4; ®¡®§ ç¥ë ¬®£®ç«¥ë m -© á⥯¥¨, 㤮¢«¥â¢®àïî騥¥áâ ¤ àâë¬ âà¥åç«¥ë¬ à¥ªãàà¥âë¬ á®®â®è¥¨ï¬ ¢¨¤ :¯à¨ k = 2m2m+2 2m+1 (1)(2)Q(1)t Qm (t)+m+1 (t) = Qm (t) 2m+11(1)+2m+21 (Q(2)m (t) Qm (t)) ;2m+1¥¬ 3 楪¨ ¯®£à¥è®á⨯ਠk = 2m + 1612m+3 2m+2 (2)(1)Q(2)t Qm+1 (t)+m+2 (t) = Qm+1 (t) 2m+21(2)+2m+31 (Q(1)m+1 (t) Qm+1 (t)) :2m+2â® ®§ ç ¥â, çâ® ®è¨¡ª¨ vk ¢ëà îâáï ç¥à¥§ ®¯¥à â®àë¥ ¬®£®ç«¥ë ®â A 1 B0 , ¯à¨¬¥à10v2m+1 = Q(1)m+1 (A B0 ) v : áᬮâਬ á«ãç ©, ª®£¤ k = ; k = 1; : : : ; N .
®£¤ ®¯¥à â®àë¥ ¬®¨â¥«¨ ¢ä®à¬ã« å (3.12), (3.19) ª®¬¬ãâ¨àãîâ ¤àã£ á ¤à㣮¬ ¨ § ¤ ç¨ ®¯â¨¬¨§ 樨 ¬¥â®¤ 㤠¥âáï ¨áá«¥¤®¢ âì ¤® ª®æ . á ¬®¬ ¤¥«¥, ª ¤ë© ¨§ ®¯¥à â®à®¢ Ti () ¡ã¤¥â ¨¬¥âì ¤¢ ᮡá⢥ëå § 票ïp11 1 4ti = ;2 ᯥªâà ®¯¥à â®à S () ¡ã¤¥â á®áâ®ïâì ¨§ ®¡ê¥¤¨¥¨ï íâ¨å § 票©, ¯à¨ç¥¬ ti 2[; ℄ .áá«¥¤ã¥¬ ¢¨¤ ¬®¥á⢠() = (S ()) ¢ ¯«®áª®á⨠ª®¬¯«¥ªá®£® ¯¥à¥¬¥®£® ¯à¨à §«¨çëå § 票ïå .DZਠ1 < 1=4 ¬®¥á⢮ () ¯à¥¤áâ ¢«ï¥â ᮡ®© ¤¢ ®â१ª ®¤¨ ª®¢®© ¤«¨ë,«¥ é¨å ¤¥©á⢨⥫쮩®á¨ ᨬ¬¥âà¨ç®®â®á¨â¥«ì® â®çª¨ (1=2; 0) á ªà ©¨¬¨ppâ®çª ¬¨ 1=2(1 1 4=; 0) , 1=2(1 1 4 =; 0) . DZà¨ç¥¬ ¯à¨ > 4 í⨠®â१ª¨à ᯮ«®¥ë ¯® ®¤ã áâ®à®ã ®â ç « ª®®à¤¨ â, ¯à¨ < 0 | ¯® à §ë¥.DZਠ0 < < 4 ¬®¥á⢮ () | ¤¢ ®â१ª ®¤¨ ª®¢®© ¤«¨ë,à ᯮ«®¥ëåp4=1) , 1=2(1 ¯¥à¯¥¤¨ªã«ïத¥©á⢨⥫쮩®á¨,áª®æ ¬¨¢â®çª å1=2(1ipi 4 = 1) .DZਠ4 < < p4 ¬®¥á⢮ () | ªà¥áâp á æ¥â஬ ¢ â®çª¥ (1=2; 0) ¨ á ª®æ ¬¨ ¢â®çª å (1=2(1 1 4=); 0) , 1=2(1 i 4 = 1) .
¤¨ë¬ ¯à¥®¡à §®¢ ¨¥¬(3.22)t = (1 )¬®¥á⢮ () ¤«ï ¢á¥å á«ãç ¥¢ ®â®¡à ¥âáï ®â१®ª [; ℄ .¥è¨¬ ⥯¥àì § ¤ çã ®¡ ®¯â¨¬ «ì®¬ ¢ë¡®à¥ ¯ à ¬¥â஢ ¢ ¬¥â®¤¥ (3.9). í⮬ á«ãç ¥ä®à¬ã«ë (3.12), (3.19) ¯à¨¨¬ îâ ¢¨¤yN = PN (S ())y0 ; PN () =NYi=1(1 i ) :(3.23)¯â¨¬ «ìë¬ ¡ã¤¥¬ áç¨â âì ¬¥â®¤, ¤«ï ª®â®à®£® PN0 () ¥áâì à¥è¥¨¥ § ¤ ç¨PN0 () = arg inf max jPN ()j ;(3.24)PN () 2()£¤¥ inf ¡¥à¥âáï ¯® ¢á¥¬ ¬®£®ç«¥ ¬ á⥯¥¨ N ¢¨¤ (3.23). ¥è¥¨¥ í⮩ § ¤ ç¨ ¤«ïN = 2M ®¯à¥¤¥«ï¥âáï :P20M () =1+TMTM ()2t;(3.25)62¥¬ 3 楪¨ ¯®£à¥è®á⨣¤¥TM (x) | ¬®£®ç«¥ ¥¡ë襢 1-£® த á⥯¥¨ M; = ( + )=( ) > 1 , t ®¯à¥¤¥«ï¥âáï ç¥à¥§ ¯® ä®à¬ã«¥ (3.22).