Е.В. Чижонков - Конспект лекций по методам решения симметричных линейных систем (1162400), страница 2
Текст из файла (страница 2)
᫨ ®® ¥ ¢ë¯®«¥®, â® ¢ ᨫ㠥¯à¥ë¢®á⨠¯® , ¬ ªá¨¬ «ì®¥§ 票¥ ¬®® 㬥ìè¨âì, çâ® ¯à®â¨¢®à¥ç¨â ®¯â¨¬ «ì®á⨠0 .ëç¨á«¨¬ ¢¥«¨ç¨ã q: DZਠ®¯â¨¬ «ì®¬ § 票¨ ® à ¢ q=M m 1 m=; = < 1:M +m 1+M⢥थ¨¥ ¤®ª § ®.⬥⨬, çâ® ¢¥«¨ç¨ ᮢ¯ ¤ ¥â á 1= ond2 (A); â.¥. ®â ç¨á« ®¡ãá«®¢«¥®á⨠¨á室®© ¬ âà¨æë § ¢¨á¨â ¥ ⮫쪮 â®ç®áâì ¯®«ãç ¥¬®£® à¥è¥¨ï (ª ª íâ® á«¥¤ã¥â ¨§¥à ¢¥á⢠¨«ª¨á® ), ® ¨ ᪮à®áâì ¥£® ¯®«ã票ï.8¥â®¤ ¨áª®à¥©è¥£® £à ¤¨¥â®£® á¯ã᪠¡á㤨¬ ¢®¯à®á ® ¢ë¡®à¥ ¨â¥à 樮ëå ¯ à ¬¥â஢ ¢ á«ãç ¥, ª®£¤ ¨ä®à¬ æ¨ï ®£à ¨æ å ᮡá⢥ëå § 票© ¨á室®© ¬ âà¨æë ®âáãâáâ¢ã¥â. ¯®¬¨¬ á ç « १ã«ìâ âë, á¢ï§ ë¥ á ®¯â¨¬ «ìë¬ ®¤®è £®¢ë¬ ¬¥â®¤®¬.
á室®© ï¥âáï § ¤ ç Ax = b; A = AT > 0 :DZãáâì ¨§¢¥áâë ¬¨¨¬ «ì®¥ ¨ ¬ ªá¨¬ «ì®¥ ᮡáâ¢¥ë¥ § 票ï:min(A) = m; max (A) = M:®£¤ ¥á«¨ ¢ ¬¥â®¤¥xk+1 xk+ Axk = b¯®«®¨âì = m +2 M ; â® ¡ã¤¥â á¯à ¢¥¤«¨¢ ®æ¥ª ¯®£à¥è®áâ¨mkxk xk2 qk kx0 xk2; q = M:M +m¥¤®áâ ⪮¬ ¬¥â®¤ ï¥âáï ¥®¡å®¤¨¬®áâì § ¨ï M ¨ m . è æ¥«ì | ¯®áâ஥¨¥ «£®à¨â¬ ( ¨áª®à¥©è¥£® £à ¤¨¥â®£® á¯ã᪠), ¨¬¥î饣® «®£¨çãî ᪮à®áâì á室¨¬®áâ¨, ® ¥ ¨á¯®«ì§ãî饣® ¨ä®à¬ æ¨î ® £à ¨æ å ᯥªâà . «ï í⮣® ¥®¡å®¤¨¬®¯à¨¢«¥çì ¨¤¥¨ ¢ ਠ樮®£® ¨áç¨á«¥¨ï. ¬¥¨¬ ¨á室ãî á¨á⥬㠫¨¥©ëå «£¥¡à ¨ç¥áª¨å ãà ¢¥¨© § ¤ 祩 ®âë᪠¨ï¬¨¨¬ã¬ äãªæ¨® « F (x) = (Ax; x) 2(b; x) :⨠§ ¤ ç¨ à ¢®á¨«ìë, â.¥. ¨¬¥îâ ®¤® ¨ â® ¥ ¥¤¨á⢥®¥ à¥è¥¨¥.
¥©á⢨⥫ì®,à áᬮâਬ äãªæ¨î(A(yx); y x) (Ax; x) = (Ay; y) 2(Ay; x) + (Ax; x) (Ax; x) F (y) :DZ®áª®«ìªã A = AT > 0; â® (A(y x); y x) > 0 ¯à¨ y 6= x , ¢¥«¨ç¨ (Ax; x) = (b; x)¥ § ¢¨á¨â ®â y; â® F (y) ¨¬¥¥â ¥¤¨á⢥ãî â®çªã ¬¨¨¬ã¬ , ᮢ¯ ¤ îéãî á x .¥¯¥àì ¤«ï ®âë᪠¨ï â®çª¨ íªáâ६㬠¬®® ¯à¨¬¥¨âì ¨§¢¥áâë¥ ¬¥â®¤ë ¬¨¨¬¨§ 樨 äãªæ¨® « . DZà®á⥩訬¨ ¨§ ¨å ïîâáï ¬¥â®¤ë £à ¤¨¥â®£® á¯ã᪠, ¢ª®â®àëå ¯à¨¡«¨¥¨ï ¨éãâáï ¯® ä®à¬ã«¥xk+1 = xk Æk grad(F (xk )) = xk k (Axk b); k = 2 Æk :¤¥áì Æk | ¯ à ¬¥âà ¬¥â®¤ , ¨ ¥£® ¢ë¡®à ®¯à¥¤¥«ï¥â ª®ªà¥âë© «£®à¨â¬. ¯à¨¬¥à,¥£® ¬®® ®¯à¥¤¥«¨âì ¨§ ãá«®¢¨ïÆk : F (xk+1 ) = F (xk Æk grad(F (xk )) ! min : í⮬ á«ãç ¥ ¬¥â®¤ §ë¢ ¥âáï ¬¥â®¤®¬ ¨áª®à¥©è¥£® £à ¤¨¥â®£® á¯ã᪠.
«ï 襣® á«ãç ï ª¢ ¤à â¨ç®£® äãªæ¨® « § ¤ ç ¢ë¡®à ¯ à ¬¥âà à¥è ¥âáï ¢ ¬¢¨¤¥. ¯à¥¤¥«¨¬ äãªæ¨î'(k ) = F (xk+1 ) = F (xk ) 2k (Axkb; Axkb) + 2k (A(Axkb); Axkb) :9¢¥¤¥¬ ®¡®§ 票¥ ¥¢ï§ª¨ rk = Axk b ¨ ©¤¥¬ ¢ëà ¥¨¥ ¤«ï k ¨§ ãá«®¢¨ï'0 (k ) = 0 :k =(rk ; rk ):(Ark ; rk ) áᬮâਬ ¢®¯à®á ® ᪮à®á⨠á室¨¬®á⨠«£®à¨â¬ .
¢¥¤¥¬ ®¡®§ 票¥F0 (y) = (A(y x); y x) = ky xk2A ;£¤¥ x | â®ç®¥ à¥è¥¨¥, ¨ ¤®ª ¥¬ á¯à ¢¥¤«¨¢®áâì⢥थ¨¥. DZਡ«¨¥¨ï ¬¥â®¤ ¨áª®à¥©è¥£®â¢®àïî⠮楪¥F0 (xk ) M mM +m2k£à ¤¨¥â®£® á¯ã᪠㤮¢«¥-F0 (x0 ) : ¬¥â¨¬, çâ® ¨§ í⮣® ¥à ¢¥á⢠᫥¤ã¥âkxkxk2 qkrM 0kxmxk2 ; q =M m;M +m¨ ᨬ¯â®â¨ç¥áª ï ᪮à®áâì á室¨¬®á⨠⠪ ï ¥, ª ª ã ®¯â¨¬ «ì®£® ®¤®è £®¢®£®¬¥â®¤ , ® ¨ä®à¬ æ¨ï ® ¢¥«¨ç¨ å M ¨ m §¤¥áì ¥ âॡã¥âáï.®ª § ⥫ìá⢮. 䨪á¨à㥬 â®çªã xk : § â®çª¨ y k xk ᤥ« ¥¬ ®¤¨ è £ ®¯â¨¬ «ì®£® ®¤®è £®¢®£® ¬¥â®¤ :2(AykM +myk+1 = yk訡ª ek = yk x 㤮¢«¥â¢®àï¥â á®®â®è¥¨îek+1 = Ib) :2A ek :M +mDZãáâì fzi g | ®à⮮ନ஢ ï á¨á⥬ ᮡá⢥ëå ¢¥ªâ®à®¢ ¬ âà¨æë A :Azi = i zi ; (zj ; zi ) = Æij ; i 2 [m; M ℄; m > 0 :¥£ª® ¯à®¢¥à¨âì á¯à ¢¥¤«¨¢®áâì ¥à ¢¥á⢠1DZãáâì ek =nPi=18i 2 [m; M ℄ :i zi : ®£¤ (Aek ; ek ) =bi = 12i mq= MM + mM +mnXi=1i i zi ;nXi=1!i zi =nXi=12i i ;ek+1=nXi=1nnXX2ii ; (Aek+1 ; ek+1 ) = b2i i = 2i i 1M +mi=1i=1âáî¤ ¨¬¥¥¬ ®æ¥ªã(Aek+1 ; ek+1 ) q2 (Aek ; ek ) :bi zi ;2iM +m2:10DZ®áª®«ìªã F0 (yk ) = (Aek ; ek ); â®F0 (yk+1 ) q2 F0 (yk ) = q2 F0 (xk ) :⬥⨬, çâ® ¯à¨¡«¨¥¨¥ yk+1 ¯®«ã祮 ¯® ä®à¬ã«¥yk+1 = xk grad(F (xk )) ; =1;M +mâ.¥.
¢ १ã«ìâ â¥ è £ £à ¤¨¥â®£® á¯ãáª á ¥®¯â¨¬ «ìë¬ § 票¥¬ ¯ à ¬¥âà :DZ®í⮬㠤«ï áâ®ï饣® ¯à¨¡«¨¥¨ï xk+1 ¡ã¤¥â á¯à ¢¥¤«¨¢® ¥à ¢¥á⢮F (xk+1 ) F (yk+1 )¢ á¨«ã ¯à ¢¨«ì®£® ¢ë¡®à ¨â¥à 樮®£® ¯ à ¬¥âà . ® F (y) = F0 (y) (Ax; x); â.¥.F0 (xk+1 ) (Ax; x) F0 (yk+1 ) (Ax; x) :âáî¤ á«¥¤ã¥âF0(xk+1 ) F0(yk+1 ) M mM +m2F0 (xk );¨ ᮮ⢥âá⢥® á¯à ¢¥¤«¨¢®áâì ¨áª®¬®© ®æ¥ª¨.
⢥थ¨¥ ¤®ª § ®. áç¥âë¥ ä®à¬ã«ë ¯¥à¥å®¤ xk ! xk+1 ¢ ¬¥â®¤¥ ¨áª®à¥©è¥£® £à ¤¨¥â®£® á¯ã᪠:k krk = A xkb; k =(r ; r ); xk+1 = xk(Ark ; rk )k rk¨¬¥îâ § ç¨¬ë© ¢ á«ãç ¥ ¡®«ì让 à §¬¥à®á⨠¥¤®áâ ⮪: ¤¢ 㬮¥¨ï ¬ âà¨æë ¢¥ªâ®à. DZ®íâ®¬ã ¯à ªâ¨ª¥ ç áâ® ¨á¯®«ì§ãîâ ¤à㣨¥ ä®à¬ã«ë ¯¥à¥å®¤ fxk ; rk g !fxk+1; rk+1g :k =(rk ; rk ); rk+1 = rk(Ark ; rk )k A rk ; xk+1 = xkk rk : í⮬ á«ãç ¥ âॡã¥âáï ª ¤®© ¨â¥à 樨 ¢ëç¨á«ïâì ⮫쪮 ¢¥ªâ®à A rk ; ® § â®ã® ¯®áâ®ï® åà ¨âì ¤¢ à ¡®ç¨å ¢¥ªâ®à xk ¨ rk , â.¥. 祬-â® ®¡ï§ â¥«ì® ¯à¨å®¤¨âáï à ᯫ 稢 âìáï § ¥§ ¨¥ £à ¨æ ᯥªâà («¨¡® ¢ëç¨á«¨â¥«ì®© à ¡®â®©, «¨¡®¨á¯®«ì§®¢ ¨¥¬ ¤®¯®«¨â¥«ì®© ¯ ¬ïâ¨).⬥⨬, çâ® ¬¥â®¤ë £à ¤¨¥â®£® á¯ã᪠ïîâáï ¥«¨¥©ë¬¨, â.ª.
¯ à ¬¥âà Æk¢ë¡¨à ¥âáï ª ª ¥ª®â®à ï äãªæ¨ï ¯à¨¡«¨¥¨ï xk . â® ¯à¨¢®¤¨â ª ãá«®¥¨î «¨§ á室¨¬®áâ¨, ç áâ® ¢¥áì¬ áãé¥á⢥®¬ã. 3¥¡ë襢᪨© ¤¢ãåá«®©ë© ¬¥â®¤ ¯®¬¨¬ ®¯à¥¤¥«¥¨¥ ¨ ®á®¢ë¥ ᢮©á⢠¬®£®ç«¥®¢ ¥¡ë襢 ¯¥à¢®£® த Tn (x):1) ¥ªãàà¥â®¥ á®®â®è¥¨¥:T0 (x) = 1; T1 (x) = x; Tn+1 (x) = 2x Tn (x) Tn 1 (x) :112) ਣ®®¬¥âà¨ç¥áª ï ä®à¬ . DZਠ«î¡®¬ ¨¬¥¥¬os (n + 1) = 2 os os(n) os (n 1) :DZ®« £ ï = aros x , ¯®«ã稬Tn (x) = os(n aros x) :â ä®à¬ 㤮¡ ¤«ï ¯à¨¬¥¥¨ï ®â१ª¥ [ 1; 1℄: ¬¥â¨¬, çâ® Tn (x) 1 ¯à¨jxj 1:3) §®á⮥ ãà ¢¥¨¥.
¥ªãàà¥â®¥ á®®â®è¥¨¥ ï¥âáï à §®áâë¬ ãà ¢¥¨¥¬¯® ¯¥à¥¬¥®© n . ¬ã ᮮ⢥âáâ¢ã¥â å à ªâ¥à¨áâ¨ç¥áª®¥ ãà ¢¥¨¥2 2x + 1 = 0 :«¥¤®¢ ⥫ì®,p1;2 = x x2 1Tn (x) = C1 n1 + C2 n2 :§ ç «ìëå ãá«®¢¨© ¯®«ãç ¥¬ C1 = C2 = 12 . â® ¤ ¥â1 p 2 n p 2 nTn (x) =x+ x 1 + xx 1:2⬥⨬, çâ® ¢á¥ ¬®£®ç«¥ë T2n (x) | ç¥âë¥, T2n+1 (x) | ¥ç¥âë¥, â.¥. Tk (x) =( 1)k Tk ( x): DZਠí⮬ ª®íä䍿¨¥â ¯à¨ áâ à襬 ç«¥¥ à ¢¥ 2n 1 . áᬮâਬ ¥ª®â®àë¥ ¯®«¥§ë¥ ᢮©á⢠íâ¨å ¬®£®ç«¥®¢.㫨. ©¤¥¬ [ 1; 1℄ ¢á¥ à¥è¥¨ï ãà ¢¥¨ï Tn (x) = 0; ¨á¯®«ì§ãï âਣ®®¬¥âà¨ç¥áªãî ä®à¬ã:xk = os (2k 1)k = 1; : : : ; n:2n¥£ª® ¯à®¢¥à¨âì, çâ® ®¨ ¢á¥ à §«¨çë, ¯®í⮬㠢¥ ®â१ª [ 1; 1℄ ¤à㣨å ã«¥© ¬®£®ç«¥ Tn (x) ¥ áãé¥áâ¢ã¥â.ªáâ६ã¬ë ®â१ª¥ [ 1; 1℄ .
ãâਠ®â१ª ¨¬¥¥âáï ஢® (n 1) íªáâ६ã¬(¬¥¤ã ¤¢ã¬ï ¯®á«¥¤®¢ ⥫ì묨 ã«ï¬¨). «ï ¨å ®¯à¥¤¥«¥¨ï ¬®® ¢®á¯®«ì§®¢ âìáïãà ¢¥¨¥¬sin(n aros x)np 2 :0 = Tn0 (x) =1 xâ® ¤ ¥â xm = os(m=n); m = 1; : : : ; n 1: íªáâ६ «ìëå â®çª å á¯à ¢¥¤«¨¢ëà ¢¥á⢠Tn (xm ) = ( 1)m : ஬¥ í⮣®, ¢ ª®æ¥¢ëå â®çª å x = 1 ¨¬¥¥¬: Tn (1) =1; Tn ( 1) = ( 1)n : DZ®í⮬㠮¡é¥¥ ª®«¨ç¥á⢮ íªáâ६㬮¢ ®â१ª¥ [ 1; 1℄ à ¢®(n + 1) :mxm = osm = 0; : : : ; n :n ¨¬¥ì襥 㪫®¥¨¥ ®â ã«ï. áᬮâਬ ¯à¨¢¥¤¥ë¥ ¬®£®ç«¥ë ¥¡ë襢 :Tn (x) = 21 n Tn (x) = xn + an 1 xn 1 + : : : + a0 ;â.¥. ¬®£®ç«¥ë á ª®íä䍿¨¥â®¬ 1 ¯à¨ áâ à襩 á⥯¥¨. «ï ¨å á¯à ¢¥¤«¨¢® ã⢥थ¨¥:12n ¨¬¥¥¥ 㪫®ï¥âáï ®â ã«ï á।¨+ : : : + b0 á® áâ à訬 ª®íä䍿¨¥â®¬ 1 ¯à¨¢¥¤¥ë© ¬®£®ç«¥ ¥¡ë襢 á⥯¥¨¢á¥å ¬®£®ç«¥®¢®â१ª¥Pn (x) = xn + bn 1 xn[ 1; 1℄ , â.¥.1max Pn (x) max T n (x) = 21[ 1;1℄[ 1;1℄n:.
DZãáâì kPn (x)k < 21 n . ®£¤ ¢ â®çª å íªáâ६㬠¬®£®ç«¥ ¥¡ë襢 § ª à §®á⨠T n (x) Pn (x) ®¯à¥¤¥«ï¥âáï § ª®¬ T n (x)®ª § ⥫ìá⢮sign T n (xm ) Pn (xm ) = sign ( 1)m 21nPn (xm ) = ( 1)m:DZਠí⮬ 㪠§ ï à §®áâì ï¥âáï ®â«¨çë¬ ®â ã«ï ¬®£®ç«¥®¬ á⥯¥¨ n 1 ,® ¨¬¥¥â n ã«¥©, ¯®áª®«ìªã n + 1 à § ¬¥ï¥â § ª ¢ â®çª å íªáâ६㬠. DZ®«ã祮¥¯à®â¨¢®à¥ç¨¥ ¨ ¤ ¥â ¨áª®¬ë© १ã«ìâ â.®® ¤®ª § âì, çâ® â ª®© ¬®£®ç«¥ ï¥âáï ¥¤¨á⢥ë¬.â®¡à ¥¨¥ ®â१®ª [a,b℄. DZãáâì âॡã¥âáï ©â¨ ¬®£®ç«¥, ¨¬¥¥¥ 㪫®ïî騩áï ®â ã«ï á।¨ ¢á¥å ¬®£®ç«¥®¢ á® áâ à訬 ª®íä䍿¨¥â®¬ 1 ®â१ª¥a+b b a[a; b℄ .
®£¤ ᤥ« ¥¬ «¨¥©ãî § ¬¥ã ¯¥à¥¬¥ëå x0 =+x ¤«ï ®â®¡à ¥22¨ï ®â१ª [ 1;1℄ ¢ § ¤ ë©®â१®ª [a; b℄ . ®£®ç«¥ T n (x) ¯à¨ í⮬ ¯à¥®¡à §ã¥âáï2x (b+a)¢ ¬®£®ç«¥ T n b aá® áâ à訬 ª®íä䍿¨¥â®¬ (2=(b a))n . DZ®á«¥ ¯¥à¥®à¬¨à®¢ª¨ ¨ ¨á¯®«ì§®¢ ¨ï áå¥¬ë ¤®ª § ⥫ìá⢠¨§ ¯à¥¤ë¤ã饣® ᢮©á⢠¨¬¥¥¬T [na;b℄(x) = (ba)n 21 2n Tn2x (b + a):b a®£¤ âॡã¥âáï ¨¬¥âì ¬®£®ç«¥ ¢¨¤ : Pn (x) = bn xn + bn 1 xn 1 + : : : + 1; â.¥. ᪮íä䍿¨¥â®¬ 1 ¯à¨ ¬« ¤è¥© á⥯¥¨, ¨¬¥¥¥ ®âª«®ïî騩áï ®â ã«ï ®â१ª¥Tn[a;b℄(x)[a; b℄; a 0: £® ¬®® ¯®«ãç¨âì ¯¥à¥®à¬¨à®¢ª®© Pn (x) = [a;b℄ ; â ª ª ª ¬®£®ç«¥Tn (0)T [na;b℄(x)¨¬¥¥â ¢á¥ 㫨 [a; b℄ . DZ®ª ¥¬, çâ® ¯®áâà®¥ë© ¬®£®ç«¥ ¨¬¥¥â ¨¬¥ì襥 ®âª«®¥¨¥ ®â ã«ï ¢ ᢮¥¬ ª« áá¥. ᫨ ¯à¨¬¥¨âì 㥠¨á¯®«ì§®¢ ãî ¢ëè¥á奬ã à áá㤥¨©, â® ¯®«ã稬, çâ® à §®áâì Pn (x) Pn (x) ï¥âáï ¬®£®ç«¥®¬ n -©á⥯¥¨, ¨¬¥¥â n ã«¥© ¢ãâਠ[a; b℄ ¨ ¤®¯®«¨â¥«ìë© ã«ì ¯à¨ x = 0 .
«¥¤®¢ ⥫ì®íâ à §®áâì ¤®« ⮤¥á⢥® à ¢ïâìáï ã«î, çâ® ¯à¨¢®¤¨â ª ¯à®â¨¢®à¥ç¨î.pà⮮ନ஢ ®áâì ®â१ª¥ [ 1; 1℄ . DZ®á«¥¤®¢ ⥫ì®áâì T~0 (x) = 1= 2; T~n (x) =1 1Tn (x); n 1 ®¡à §ã¥â ®à⮮ନ஢ ãî á¨á⥬ã á ¢¥á®¬ p(x) = p, â.¥. á¯à 1 x2¢¥¤«¨¢®Z11n :T~n (x)T~m (x)p(x)dx = Æmâ® ¤ ¥â ¢®§¬®®áâì ¥ ⮫쪮 㤮¡® 室¨âì ¨«ãç襥 ¯à¨¡«¨¥¨¥ ¤«ï äãªæ¨¨f (x) ¢ ¯à®áâà á⢥ L2 ( 1; 1) :f (x) nXk=0ak T~k (x);Z1£¤¥ ak = p(x)f (x)T~k (x)dx ;113® ¨ ¡ëáâà® ¢ëç¨á«ïâì íâ® ¯à¨¡«¨¥¨¥ ¢ 䨪á¨à®¢ ®© â®çª¥ x ¯® ४ãàà¥â®©ä®à¬ã«¥ ¤«ï ¬®£®ç«¥®¢ ¥¡ë襢 . áᬮâਬ á«¥¤ãî騩 «£®à¨â¬ á ¯¥à¥¬¥ë¬ ¨â¥à æ¨®ë¬ ¯ à ¬¥â஬xk+1 xk+ Axk = bk+1㤥¬ áç¨â âì, çâ® ¤®¯ã᪠¥âáï ¨§¬¥¥¨¥ ¯ à ¬¥âà ¢ § ¢¨á¨¬®á⨠®â ®¬¥à ¨â¥à 樨 á«¥¤ãî騬 (横«¨ç¥áª¨¬ á ¯¥à¨®¤®¬ N ) ®¡à §®¬:1 ; 2 ; : : : ; N ; 1 ; 2 ; : : : :⢥थ¨¥ 1.
DZਠãá«®¢¨¨A = AT , (A) 2 [m; M ℄0<mM <1¨®¯â¨-¬ «ìë¥ § ç¥¨ï ¯ à ¬¥â஢ à ¢ë ®¡à âë¬ ¢¥«¨ç¨ ¬ ª®à¥© ¬®£®ç«¥ ¥¡ë襢 á⥯¥¨N ®â१ª¥+ M 2 m os (22jN 1) . DZਠí⮬ ¨¬¥¥âá室¨¬®á⨠§ N è £®¢:[m; M ℄ : j 1 =¬¥áâ® á«¥¤ãîé ï ®æ¥ª ᪮à®áâ¨M +m2N£¤¥ppkx xN k2 1 +2qq2N kx x0 k2 ;pmq = pMM+ m .®ª § ⥫ìá⢮. «ï à áᬠâਢ ¥¬®£® ¬¥â®¤ § N è £®¢ ¨¬¥¥¬ á«¥¤ãî騩 § ª®¨§¬¥¥¨ï ¢¥ªâ®à ®è¨¡ª¨ ek+N = x xk+Nek+N = BN ek ; BN =NY(Ij =1j A) :㤥¬ ¨áª âì ¡®à ¨â¥à 樮ëå ¯ à ¬¥â஢ j , j = 1; :::; N ¨§ ãá«®¢¨ï ¬¨¨¬ã¬ ¥¢ª«¨¤®¢®© ®à¬ë ®¯¥à â®à ¯¥à¥å®¤ BN : ᫨ A = AT > 0 , ⮣¤ á¯à ¢¥¤«¨¢® A =QNQDQ 1 ¨ BN = Q j =1 (I j D)Q 1 : â® ®§ ç ¥â, çâ® BN ï¥âáï ᨬ¬¥âà¨ç®©¬ âà¨æ¥©.
DZ®í⮬ãNYkBN k2 = minmax j (1 j (A))j :minjj 2[m;M ℄j =1Q ¬¥â¨¬, çâ® ¢ëà ¥¨¥ Nj=1(1 j (A)) ï¥âáï ¬®£®ç«¥®¬ N -®© á⥯¥¨ ®â१ª¥ [m; M ℄ á ¬« ¤è¨¬ ª®íä䍿¨¥â®¬, à ¢ë¬ ¥¤¨¨æ¥. ëè¥ ¡ë«® ¯®ª § ®,çâ® ¬®£®ç«¥, ¨¬¥¥¥ ®âª«®ïî騩áï ®â ã«ï [m; M ℄ ¢ í⮬ ª« áá¥, ¨¬¥¥â ¢¨¤T [m;M ℄()PN () = N[m;M ℄ ; £¤¥ T [na;b℄ (x) = (b a)n 21 2n Tn 2x b (ba+a) | ¯à¨¢¥¤¥ë© ¬®£®ç«¥TN (0)¥¡ë襢 í⮬ ®â१ª¥. £® ª®à¨ ¢ë¯¨áë¢ îâáï «¨â¨ç¥áª¨, ¨áª®¬ë¥ j ¥áâ좥«¨ç¨ë ®¡à âë¥ í⨬ ª®àï¬. ©¤¥¬ ¢¥«¨ç¨ã ®à¬ë kPN ()k2 = 1=jTN[m;M ℄ (0)j: «ï í⮣® ¢®á¯®«ì§ã¥¬áï á«¥¤ãî騬 ¯à¥¤áâ ¢«¥¨¥¬ ¤«ï ¬®£®ç«¥ ¥¡ë襢 1TN (x) =2x+px21N+ xpx21N :14 ª ª ªx=TN[m;M ℄(0)= TNpM +m; âॡã¥âáï ¢ëç¨á«¨âì ¢¥«¨ç¨ë x x2 1 ¤«ïM mM +m: «¥¬¥â àë¥ ¯à¥®¡à §®¢ ¨ï ¯à¨¢®¤ïâ ª à ¢¥á⢠¬M mxpx2pp pM mp p :1= pp( Mm)( M + m)ppmᯮ«ì§ãï ®¡®§ 票¥ q = pMM + m ; ¬®® § ¯¨á âìTNM +m( q)N + ( q)=M m2N;®âªã¤ ¨ á«¥¤ã¥â ¨áª®¬®¥ ¢ëà ¥¨¥ ¤«ï ®æ¥ª¨ ¯®£à¥è®áâ¨.
⢥थ¨¥ ¤®ª § ®.«¥¤ã¥â ®â¬¥â¨âì, çâ® ¢ á।¥¬ § ª ¤ã N ¨â¥à 権 ¯à¨ ¢ë¡®à¥ 祡ë襢᪨åp1è £®¢ ®è¨¡ª ã¡ë¢ ¥â ¯à¨¬¥à® ª ª 1+p ; çâ® ¯à¨ ¬ «ëå áãé¥á⢥® ¬¥ìè¥, 祬1 : «®£¨ç ï ¢¥«¨ç¨ ¤«ï ®¯â¨¬ «ì®£® ®¤®è £®¢®£® ¬¥â®¤ 1+«ãçè¨âì ¯®«ãç¥ãî ᪮à®áâì á室¨¬®á⨠¥«ì§ï, â ª ª ª ¬®£®ç«¥ ¥¡ë襢 ®¡« ¤ ¥â ᢮©á⢮¬ ¬¨¨¬ «ì®á⨠®à¬ë, | íâ® ¡¥§ãá«®¢®¥ ¤®á⮨á⢮. ¥¤®áâ ⪮¬¬¥â®¤ ï¥âáï âॡ®¢ ¨¥ ¨ä®à¬ 樨 ® £à ¨æ å ᯥªâà ¬ âà¨æë A .¤ ª® §¤¥áì ¯®ï¢«ï¥âáï ¢ ë© á¯¥ªâ 㯮à冷稢 ¨ï è £®¢.