Часть 2 (1161646), страница 32
Текст из файла (страница 32)
Если нормаль к площадке ЛЯ расположена под углом сс к ливиям напряженности, то имеем ЛЯ„=ЛЯсоэщ откуда общее число линяй ЛН = НЛБ соз и, Так как Н сова = Н„есть проекция вектора вапряжеввости па нормаль к площадяе, то ЛН = Н,ЛЯ. (29) ~ Н„дд= о. (ЗО) Условие неразрывности магвитвого поля можно по аналогии с гидродпвамическим записать так: дНх дНэ дНг "+ "+ — '=О, дл ду дз или й(ты=о. (31) Папряжеввость магнитного поля П в данной точке определяется действием всех отдечьвых участков проводника. Согласно освоваввому на опыте закону Лапласа и Био — Савара элемент контура Лй по которому тече~ ток силой 1, создав~ в точке А простравства (рис. 13.4), находящейся на рас- Положительным обычно считают направление внешней нормали. В отличие от линий электростатической напряженности, которые оорываются ва зарядах, линии магвитвой напряженности всегда замкнуты, так как магнитные заряды в природе яе обнаружены.
Поэтому волвый поток магнитной напряженности через замкнутую поверхность Я всегда равен нулю: э И ЭЛБМНИТЫ ЭЛЕКТРОСТАТгГКИ И ЭЛККТРОДИИАЪИгКИ 437 стоянии г от элемента Л), магнитное поле напряженностью 1Л! а(п сс ЛН= 4лг (32) где а — угол между Л! и г (положительным считается направление тока 1). В векторной форме магнитная напряженность в точке А 1(Л! Х г] 4лг (32а) (ЗЗ) образуемая напряженностями, которые создаются всеми и элементами контура (проводника) .
В случае прямолинейного проводника (рис. 43.5) напряженности от всех его участков направлены одинаково, вследствие чего гЛа Л! Лсс Ли Л! = —. или и!и сс г "з псс "е где г, — кратчайшее расстояние от Л! до точки А. Тогда ва основания (32) и (33) для бесконечно длинного прямого проводника имеем Н= .! 4лге 2ги'э о прямоугольной системы Проекции вектора напряженности (32а) на оси координат хух составляют 1 (Л(„г, — Л(,г„) 1 (Л(,г„— Л(„г,) 4лг ' " 4лг 1 (Л(„г„Л(„г„) ЛНт з 4лг (34) здесь индексы обозначают проекции векторов Л! и г на соотэетстеуютцие оси координат.
Аналогичные соотношения определяют в гидродинамике поле скоростей, индуцпруемых вихревой нитью. Составим выражение для циркуляции вектора напряженности магнитного поля по аамкнутому контуру !. Если проводник расположен от элемента контура на расстоянии г (рис. (3.6), то длину элемента контура можно выразить через угол, под которым ов виден с линии элентрического тона: Ж = тяф. Произведение длины элемента контура на тавгенциальную к нему составляющую вектора напряженности составляет 1 1 Н Л = —,„. Зф = —, Аф. 2лг 2л Величина циркуляции вектора Н по аамквутому контуру ! равна поэтому эл Нгя)= 1 Иф=1. $, ='1' 2л,! о (35) Здесь (Л! Х г] — векторное произведение, причем элементу длпвы Л! приписыэается направление тока, а радиусу-вектору г — направление от элемента Л! к точке А. Полная напряженность Н а точке А есть векторная сумма Н=чЭЛН, э 163 ГЛ.
ХИ!, ЗЛЕМБНТЫ МАГНИТНОЙ ГАЗОВОЙ ДИНАМИКИ Таким образом. в отличие от электростатического поля, которое, согласно (10), является потенциальным,магвитиое поле оказывается вихревым (циркуляция вектора Н по замкнутому контуру ве раааа нулю). Опыты Фарадея и Ампера показали, что ва всякий проводник с током, помещенный в магиитвое поле, действует электромагнитная сила. Ампер установил, что величина этой силы Ы в вакууме равна Ь1 = ро!В Ы = ро) НЬ! зш ш (36) Направлевве Ь1 перпендикулярно к плоскости векторов Ь1 и Н и определяется правилом левой руки: если ладонь левой руки расположить так, чтобы Г р А Рис.
13.5. К определению магиитвого поля прямоливейвого проводвпка с током Рпс. 13.6. К определеиию циркуляции вектора магвитиой папряжевиости по замкнутому контуру ! перпендикулярная к Ь! составляющая вапряжеивостп Н, была направлена и ладони, а четыре вытянутые пальца были направлены вдоль тока 1, то отставленный большой палец укажет ваправлевие силы Ы. В векторной форме завоя Ампера имеет вид Ь1 = ро1(Ы Х Н), (37) где ваправлевие Ы совпадает с направлением тока. Приведевиые сведения, строго говоря, свраведливы лишь в случае обрааовавия магиитвого поля в пустоте. Опыт показывает,что свойства среды, в которой размещеяы проводники с током, влияют ва иапряжеввость полн. Если поместить проводник с током в среду, которая вамагвичивается (магиетик), то возввкает дополвительвая вапряжевиость магнитного поля Н', суммирующаяся с вапряжевиостью ввешвего поля Н,; результирующую вапряжеввость В называют вектором магнитной индукции В = рвНо = (Но + Н') ро, (38) Гдс ре — абсо.гютная магнитная проницаемость среды.
Абсолютная магвитвая проницаемость ваписывается в виде произведем кг г вия магнитной постоянной р (р =4я 10 т Гв1м = 4л 10 т . ~ и безразмервой магнитной провицаемости р, указывающей, во сколько раз магвитвая ивдукция в данной среде В = ряВ, отличается от магиитиой индукции в вакууме Во = роВо (при одной и той же напряженности магнитного поля). Единицей измеревия магниткой индукции служит тесла (Тл).
В магнетике сила Ампера зависит от суммарной иапряжеивостп, т. е. от вектора магвптиой индукции В = (Но + Н )ро.' Ь| = 1ВЫ э!и и =1ВЬе зш а, (39) й 2. ЭЛЕМЕНТЫ ЭЛЕКТРООТАТИКИ И ЭЛЕКТРОДИНА31ЛКИ 400 ГдЕ Ли = Л)Я вЂ” объем участка Лг прОВОДНИКа, иМЕющегО пОПЕРечное сечение о.
В векторное форме сила Ампера Л( = () Х В) Лр. (40) Проекции силы Алрпера ва оси прямоугольвок системы координат Л/ = Лр(грВ, — ),Вр), Л(р = Лр(), — 1„В,), ЛП = Лр()рВр — )рВ,). (р() У газов и плазмы (иовизирозаввый газ) абсолютная диэлектрическая и магвитная проницаемость имеет практически такое же значение, как з пустоте (е, кр ер, ра ж р,), поэтому в ураввевиях магнитной газовой дивамики можво обойтись без векторов электрической индукции п напряженности магвитвого поля, т, е.можно ве учитывать явлений поляризации и вамагпичевия среды.
Аналогично ливиям напряженности, которые характеризуют магвптвое поле з пустоте, можно построить линии магнитной индукции. Через единицу поверхности, нормальной к линиям ивдукции, проводят число линий, равное местному звачевию вектора индукции;полное число линяй индукции, пересекающих вормальвую к вим элементарную площадку ЛЯ„, составляет элементарный поток магвитвой индукции ЛФ = ВЛЯ = В„ЛЯ. (40) Ливии индукции, выходящие из объема, огравичеввого давкой поверхвостью, дают положительный поток, а входящие з этот объем — отрицательный поток; линии магвитиой индукции всегда замкнуты, следовательно, для нпх должво выполняться условие веразрызвости дВ„ дВр дВ, й)чВ= " + Р+ Р=О. дз ду др (43) Полный поток индукции через поверхность Я Ф = ) В„ЕЯ.
(44) Для замкнутой позерхвости всегда имеем Ф = 0 В системе СИ поток индукции вамеряется з веберах (Вб): ( Вб = ( Тл Х $ мр. Можно показать, что при пересечеиии границы двух сред с разными значевиями магвитиой проницаемости )г1 и рр вормальяая составляющая магвитвой индукции сохравяется (если на гравице вет поверхностных токов), а тавгевциальвая составляющая претерпевает раарыз: в в В =В 1а зз' р р 1 2 (45) Состазлярощпе магнитной напряженности ведут себя противоположным обрааом: Нк = Нм, )р~Н1р = )ррНр .
(46) Иначе говоря, при потоке ивдукции, направленном по нормали к возерхвостп раздела магиетикоз, и отсутствии поверхностных токов вектор индукции ве взмевяется, а вектор вапряжеввости испытывает скачок. Магнитный поток в некоторых случаях переходит целиком из одной среды в другую (последозательвое соединение), а в других — разветвляется яа отдельные части, которые аатем сливаются (параллельвое соединение). Электрический ток представляет собой поток заряженных частиц— электровоз, иовоз, Поэтому сила Ампера, действующая иа проводник, слагается из сил, приложеввых к движущимся аарядам, Если заряжевные частицы движутся звутри твердого или жидкого тела, то благодаря пх столкновениям с молекулами или атомами тела сила 190 Гл.
хггг. элементы мАГнитнОЙ ГА30ВОЙ дггнлмнкй Ампера передается на тело. Например, если боковые стенки кольцевого сосуда, наполненного проводящей жидкостью, являются электродами, к которым подведен ток, а дво вредставляет собой изолятор, установленный ва полюсе прямого магнита, то ток течет по радиусам, а вектор магнитной напряженности параллелен стенкам. В этом случае жидкость в сосуде приходит в круговое дзпжение (сила действует в одном и том же направлении на положительные и отрицательные заряды, так как они движутся в противоположных направлениях).
Сила тока 1 равна суммарному заряду, перенесенному з единицу времеви через поперечное сечение проводника: 7 = елаИ'Я = раИгЯ. (47) Здесь с — величина отдельного заряда, иа — число движущихся зарядов в единице объема, И' — скорость их движения,  — площадь поперечного сечения проводника. Подставляя это выражение в (37), получаем силу, приложенную к сумыарному заряду на участке длиной А(: й! = елаИгйБВ з(п и. Число зарядов, движущихся по участку проводника Ж, и' = лаБА(, поэтому сила, действующая на один движущийся заряд, А/ Ьу' = —,=еИ'Вяпаа.
п' (48) Сила АГ, называемая силой Лоренца, перпендикулярна к плоскости, в которой лежат векторы ат' и В; для положительного заряда она определяется по правилу левой руки. Если ЪУ СВ, то сила имеет наиболыпее значение (зги са = 1), если Гт' 'з В, то сила равна нулю (Мпса = О). В векторной форме закон Лоренца имеет вид АЕ = е [% Х В], (49) а в проекциях на прямоугольные координатные оси АУ =а[зВа — зэВ„), Ь(„=е(и„— иВ ), Ау =е(и — иВ„). (50) Здесь и, г, ю — компоненты скорости Ът'. Если ва заряды действует также электрическое поле, то к силе Лоренца добавится сила Кулона, которая, согласно (2), равна еЕ. Полная электромагнитная сила, действующая на заряд, будет в этом случае й( = е(Е + [Гэг Х В]).
(51) Электромагнитная сила, приложенная к единичному заряду, очень мала, по следует иметь в виду, что при обычных токах переносится очень большое число зарядов, вследствие чего сила, приложенная к проводящему телу, может оказаться значнтельнов. Если электрическое и магнитное поля взаимно перпендикулярны (Е С В), то при условии Е = — [%'Х В] Е л В' (52) силы Кулона и Лоренца уравновешиваются, т. е.