Диссертация (1154897), страница 12
Текст из файла (страница 12)
Novel cell death program leads toneutrophil extracellular traps // J Cell Biol. ‒ 2007. ‒ T. 176, № 2. ‒ C. 231-41.76. Kuma A., Hatano M., Matsui M., Yamamoto A., Nakaya H., Yoshimori T.,Ohsumi Y., Tokuhisa T., Mizushima N. The role of autophagy during the early neonatal74starvation period // Nature. ‒ 2004. ‒ T. 432, № 7020. ‒ C. 1032-6.77.
Eskelinen E. L., Saftig P. Autophagy: a lysosomal degradation pathway with acentral role in health and disease // Biochim Biophys Acta. ‒ 2009. ‒ T. 1793, № 4. ‒ C.664-73.78. Ermert D., Urban C. F., Laube B., Goosmann C., Zychlinsky A., Brinkmann V.Mouse neutrophil extracellular traps in microbial infections // J Innate Immun. ‒ 2009.
‒T. 1, № 3. ‒ C. 181-93.79. Fang F. C. Antimicrobial reactive oxygen and nitrogen species: concepts andcontroversies // Nat Rev Microbiol. ‒ 2004. ‒ T. 2, № 10. ‒ C. 820-32.80. Papayannopoulos V., Metzler K. D., Hakkim A., Zychlinsky A. Neutrophilelastase and myeloperoxidase regulate the formation of neutrophil extracellular traps // JCell Biol. ‒ 2010.
‒ T. 191, № 3. ‒ C. 677-91.81. Almyroudis N. G., Grimm M. J., Davidson B. A., Röhm M., Urban C. F., SegalB. H. NETosis and NADPH oxidase: at the intersection of host defense, inflammation,and injury // Front Immunol. ‒ 2013. ‒ T. 4. ‒ C. 45.82. Kessenbrock K., Krumbholz M., Schönermarck U., Back W., Gross W. L.,Werb Z., Gröne H. J., Brinkmann V., Jenne D. E. Netting neutrophils in autoimmunesmall-vessel vasculitis // Nat Med.
‒ 2009. ‒ T. 15, № 6. ‒ C. 623-5.83. Nakazawa D., Shida H., Tomaru U., Yoshida M., Nishio S., Atsumi T., IshizuA. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCAassociated microscopic polyangiitis // J Am Soc Nephrol. ‒ 2014. ‒ T. 25, № 5. ‒ C.990-7.84. Keshari R. S., Jyoti A., Kumar S., Dubey M., Verma A., Srinag B. S.,Krishnamurthy H., Barthwal M. K., Dikshit M.
Neutrophil extracellular traps containmitochondrial as well as nuclear DNA and exhibit inflammatory potential // CytometryA. ‒ 2012. ‒ T. 81, № 3. ‒ C. 238-47.85. Wang Y., Wang W., Wang N., Tall A. R., Tabas I. Mitochondrial OxidativeStress Promotes Atherosclerosis and Neutrophil Extracellular Traps in Aged Mice //Arterioscler Thromb Vasc Biol. ‒ 2017. ‒ T. 37, № 8. ‒ C. 99-107.7586. Pitocco D., Tesauro M., Alessandro R., Ghirlanda G., Cardillo C.
Oxidativestress in diabetes: implications for vascular and other complications // Int J Mol Sci. ‒2013. ‒ T. 14, № 11. ‒ C. 21525-50.87. Das P., Biswas S., Mukherjee S., Bandyopadhyay S. K. Association ofOxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus //Mymensingh Med J. ‒ 2016. ‒ T. 25, № 1. ‒ C. 148-52.88. Du X., Stocklauser-Färber K., Rösen P. Generation of reactive oxygenintermediates, activation of NF-kappaB, and induction of apoptosis in humanendothelial cells by glucose: role of nitric oxide synthase? // Free Radic Biol Med. ‒1999.
‒ T. 27, № 7-8. ‒ C. 752-63.89. Gupta S., Chough E., Daley J., Oates P., Tornheim K., Ruderman N. B.,Keaney J. F. Hyperglycemia increases endothelial superoxide that impairs smoothmuscle cell Na+-K+-ATPase activity // Am J Physiol Cell Physiol. ‒ 2002. ‒ T. 282, №3. ‒ C. C560-6.90. Nishikawa T., Edelstein D., Du X. L., Yamagishi S., Matsumura T., KanedaY., Yorek M. A., Beebe D., Oates P. J., Hammes H. P., Giardino I., Brownlee M.Normalizing mitochondrial superoxide production blocks three pathways ofhyperglycaemic damage // Nature. ‒ 2000. ‒ T. 404, № 6779. ‒ C. 787-90.91.
Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by earlyglycation products: a mechanism for accelerated atherogenesis in diabetes // BiochemBiophys Res Commun. ‒ 1990. ‒ T. 173, № 3. ‒ C. 932-9.92. Ahmad W., Ijaz B., Shabbiri K., Ahmed F., Rehman S. Oxidative toxicity indiabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation // JBiomed Sci. ‒ 2017. ‒ T. 24, № 1. ‒ C.
76.93. Gerber P. A., Rutter G. A. The Role of Oxidative Stress and Hypoxia inPancreatic Beta-Cell Dysfunction in Diabetes Mellitus // Antioxid Redox Signal. ‒2017. ‒ T. 26, № 10. ‒ C. 501-518.94. Domingueti C. P., Dusse L. M., Carvalho M., de Sousa L. P., Gomes K. B.,Fernandes A. P. Diabetes mellitus: The linkage between oxidative stress, inflammation,76hypercoagulability and vascular complications // J Diabetes Complications. ‒ 2016. ‒ T.30, № 4. ‒ C. 738-45.95. Inoguchi T., Nawata H.
NAD(P)H oxidase activation: a potential targetmechanism for diabetic vascular complications, progressive beta-cell dysfunction andmetabolic syndrome // Curr Drug Targets. ‒ 2005. ‒ T. 6, № 4. ‒ C. 495-501.96. Savu O., Ionescu-Tirgoviste C., Atanasiu V., Gaman L., Papacocea R., StoianI. Increase in total antioxidant capacity of plasma despite high levels of oxidative stressin uncomplicated type 2 diabetes mellitus // J Int Med Res. ‒ 2012.
‒ T. 40, № 2. ‒ C.709-16.97. Marra G., Cotroneo P., Pitocco D., Manto A., Di Leo M. A., Ruotolo V.,Caputo S., Giardina B., Ghirlanda G., Santini S. A. Early increase of oxidative stressand reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: a casefor gender difference // Diabetes Care. ‒ 2002. ‒ T. 25, № 2. ‒ C. 370-5.98. Pitocco D., Di Stasio E., Romitelli F., Zaccardi F., Tavazzi B., Manto A.,Caputo S., Musella T., Zuppi C., Santini S. A., Ghirlanda G. Hypouricemia linked to anoverproduction of nitric oxide is an early marker of oxidative stress in female subjectswith type 1 diabetes // Diabetes Metab Res Rev. ‒ 2008.
‒ T. 24, № 4. ‒ C. 318-23.99. Aouacheri O., Saka S., Krim M., Messaadia A., Maidi I. The investigation ofthe oxidative stress-related parameters in type 2 diabetes mellitus // Can J Diabetes. ‒2015. ‒ T. 39, № 1. ‒ C. 44-9.100. Tupe R. S., Diwan A. G., Mittal V. D., Narayanam P. S., Mahajan K. B.Association of plasma proteins at multiple stages of glycation and antioxidant statuswith erythrocyte oxidative stress in patients with type 2 diabetes // Br J Biomed Sci. ‒2014. ‒ T. 71, № 3.
‒ C. 93-9; quiz 138.101. Schaffer S. W., Jong C. J., Mozaffari M. Role of oxidative stress in diabetesmediated vascular dysfunction: unifying hypothesis of diabetes revisited // VasculPharmacol. ‒ 2012. ‒ T. 57, № 5-6. ‒ C. 139-49.102. Ceriello A., Mercuri F., Quagliaro L., Assaloni R., Motz E., Tonutti L.,Taboga C. Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress77// Diabetologia.
‒ 2001. ‒ T. 44, № 7. ‒ C. 834-8.103. Tannous M., Rabini R. A., Vignini A., Moretti N., Fumelli P., Zielinski B.,Mazzanti L., Mutus B. Evidence for iNOS-dependent peroxynitrite production indiabetic platelets // Diabetologia. ‒ 1999.
‒ T. 42, № 5. ‒ C. 539-44.104. Gao L., Mann G. E. Vascular NAD(P)H oxidase activation in diabetes: adouble-edged sword in redox signalling // Cardiovasc Res. ‒ 2009. ‒ T. 82, № 1. ‒ C. 920.105. Kartha G. K., Moshal K. S., Sen U., Joshua I. G., Tyagi N., Steed M. M.,Tyagi S. C. Renal mitochondrial damage and protein modification in type-2 diabetes //Acta Diabetol. ‒ 2008. ‒ T. 45, № 2.
‒ C. 75-81.106. Tibaut M., Petrovic D. Oxidative Stress Genes, Antioxidants and CoronaryArtery Disease in Type 2 Diabetes Mellitus // Cardiovasc Hematol Agents Med Chem.‒ 2016. ‒ T. 14, № 1. ‒ C. 23-38.107. Ates I., Kaplan M., Yuksel M., Mese D., Alisik M., Erel O., Yilmaz N., GulerS. Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and thefactors associated with thiol oxidation // Endocrine. ‒ 2016. ‒ T. 51, № 1. ‒ C. 47-51.108. Hernandez-Perez M., Chopra G., Fine J., Conteh A. M., Anderson R.
M.,Linnemann A. K., Benjamin C., Nelson J. B., Benninger K. S., Nadler J. L., Maloney D.J., Tersey S. A., Mirmira R. G. Inhibition of 12/15-Lipoxygenase Protects Against betaCell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes// Diabetes. ‒ 2017. ‒ T.
66, № 11. ‒ C. 2875-2887.109. Mukhtyar C., Lee R., Brown D., Carruthers D., Dasgupta B., Dubey S.,Flossmann O., Hall C., Hollywood J., Jayne D., Jones R., Lanyon P., Muir A., Scott D.,Young L., Luqmani R. A. Modification and validation of the Birmingham VasculitisActivity Score (version 3) // Ann Rheum Dis. ‒ 2009. ‒ T.
68, № 12. ‒ C. 1827-32.110. Suppiah R., Mukhtyar C., Flossmann O., Alberici F., Baslund B., Batra R.,Brown D., Holle J., Hruskova Z., Jayne D. R., Judge A., Little M. A., Palmisano A.,Stegeman C., Tesar V., Vaglio A., Westman K., Luqmani R. A cross-sectional study ofthe Birmingham Vasculitis Activity Score version 3 in systemic vasculitis //78Rheumatology (Oxford). ‒ 2011.
‒ T. 50, № 5. ‒ C. 899-905.111. Алексеев А. В., Проскурнина Е. В., Владимиров Ю. А. Определениеантиоксидантов методом активированной хемилюминесценции с использованием2, 2'-азо-бис (2-амидинопропана) // Вестник Московского университета. Серия 2:Химия. ‒ 2012. ‒ T. 53, № 3. ‒ C. 187-193.112. Образцов И. В., Годков М. А., Полимова А. М., Дёмин Е. М.,Проскурнина Е. В., Владимиров Ю. А.
Оценка функциональной активностинейтрофилов цельной крови методом двухстадийной стимуляции: новый подход кхемилюминесцентному анализу // Российский иммунологический журнал. ‒ 2015.‒ T. 9, № 4. ‒ C. 418-425.113. Созарукова М. М., Проскурнина Е. В., Владимиров Ю. А.Сывороточный альбумин как источник и мишень свободных радикалов впатологии // Вестник Российского государственного медицинского университета.‒ 2016. № 1.
‒ C. 61-67.114. Giacco F., Brownlee M. Oxidative stress and diabetic complications // CircRes. ‒ 2010. ‒ T. 107, № 9. ‒ C. 1058-70.115. Csernok E., Ernst M., Schmitt W.,Bainton D. F., Gross W. L. Activated neutrophils express proteinase 3 on their plasmamembrane in vitro and in vivo // Clin Exp Immunol. ‒ 1994. ‒ T. 95, № 2. ‒ C. 244-50.79ПРИЛОЖЕНИЕ 1Метод определения антиоксидантной активности плазмы кровиметодом кинетической люминол-активированной хемилюминесценцииДляоценкиантиоксидантноймодифицированнуюемкостиметодику[12],плазмыкровиоснованнуюиспользовалинаподавлениихемилюминесценции (ХЛ).